Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Cells ; 11(6)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326419

RESUMO

Reshaping the intestinal microbiota by the ingestion of fiber, such as pectin, improves alcohol-induced liver lesions in mice by modulating bacterial metabolites, including indoles, as well as bile acids (BAs). In this context, we aimed to elucidate how oral supplementation of pectin affects BA metabolism in alcohol-challenged mice receiving feces from patients with alcoholic hepatitis. Pectin reduced alcohol liver disease. This beneficial effect correlated with lower BA levels in the plasma and liver but higher levels in the caecum, suggesting that pectin stimulated BA excretion. Pectin modified the overall BA composition, favoring an augmentation in the proportion of hydrophilic forms in the liver, plasma, and gut. This effect was linked to an imbalance between hydrophobic and hydrophilic (less toxic) BAs in the gut. Pectin induced the enrichment of intestinal bacteria harboring genes that encode BA-metabolizing enzymes. The modulation of BA content by pectin inhibited farnesoid X receptor signaling in the ileum and the subsequent upregulation of Cyp7a1 in the liver. Despite an increase in BA synthesis, pectin reduced BA serum levels by promoting their intestinal excretion. In conclusion, pectin alleviates alcohol liver disease by modifying the BA cycle through effects on the intestinal microbiota and enhanced BA excretion.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Animais , Ácidos e Sais Biliares , Humanos , Camundongos , Pectinas/farmacologia
3.
Int J Cancer ; 150(8): 1255-1268, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843121

RESUMO

Bile acids (BAs) play different roles in cancer development. Some are carcinogenic and BA signaling is also involved in various metabolic, inflammatory and immune-related processes. The liver is the primary site of BA synthesis. Liver dysfunction and microbiome compositional changes, such as during hepatocellular carcinoma (HCC) development, may modulate BA metabolism increasing concentration of carcinogenic BAs. Observations from prospective cohorts are sparse. We conducted a study (233 HCC case-control pairs) nested within a large observational prospective cohort with blood samples taken at recruitment when healthy with follow-up over time for later cancer development. A targeted metabolomics method was used to quantify 17 BAs (primary/secondary/tertiary; conjugated/unconjugated) in prediagnostic plasma. Odd ratios (OR) for HCC risk associations were calculated by multivariable conditional logistic regression models. Positive HCC risk associations were observed for the molar sum of all BAs (ORdoubling  = 2.30, 95% confidence intervals [CI]: 1.76-3.00), and choline- and taurine-conjugated BAs. Relative concentrations of BAs showed positive HCC risk associations for glycoholic acid and most taurine-conjugated BAs. We observe an association between increased HCC risk and higher levels of major circulating BAs, from several years prior to tumor diagnosis and after multivariable adjustment for confounders and liver functionality. Increase in BA concentration is accompanied by a shift in BA profile toward higher proportions of taurine-conjugated BAs, indicating early alterations of BA metabolism with HCC development. Future studies are needed to assess BA profiles for improved stratification of patients at high HCC risk and to determine whether supplementation with certain BAs may ameliorate liver dysfunction.


Assuntos
Ácidos e Sais Biliares/sangue , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Neoplasias Hepáticas/sangue , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Nutrients ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36615814

RESUMO

Alterations in the composition of the gut microbiota (dysbiosis) are observed in nutritional liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) and have been shown to be associated with the severity of both. Editing the composition of the microbiota by fecal microbiota transfer or by application of probiotics or prebiotics/fiber in rodent models and human proof-of-concept trials of NAFLD and ALD have demonstrated its possible contribution to reducing the progression of liver damage. In this review, we address the role of a soluble fiber, pectin, in reducing the development of liver injury in NAFLD and ALD through its impact on gut bacteria.


Assuntos
Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Probióticos , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Pectinas/metabolismo , Fígado/metabolismo , Prebióticos , Probióticos/uso terapêutico , Hepatopatias Alcoólicas/metabolismo , Disbiose/microbiologia
5.
Nutrients ; 13(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835981

RESUMO

Pectin, a soluble fiber, improves non-alcoholic fatty-liver disease (NAFLD), but its mechanisms are unclear. We aimed to investigate the role of pectin-induced changes in intestinal microbiota (IM) in NAFLD. We recovered the IM from mice fed a high-fat diet, treated or not with pectin, to perform a fecal microbiota transfer (FMT). Mice fed a high-fat diet, which induces NAFLD, were treated with pectin or received a fecal microbiota transfer (FMT) from mice treated with pectin before (preventive FMT) or after (curative FMT) being fed a high-fat diet. Pectin prevented the development of NAFLD, induced browning of adipose tissue, and modified the IM without increasing the abundance of proteobacteria. Preventive FMT also induced browning of white adipose tissue but did not improve liver steatosis, in contrast to curative FMT, which induced an improvement in steatosis. This was associated with an increase in the concentration of short-chain fatty acids (SCFAs), in contrast to preventive FMT, which induced an increase in the concentration of branched SCFAs. Overall, we show that the effect of pectin may be partially mediated by gut bacteria.


Assuntos
Fígado Gorduroso/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Pectinas/farmacologia , Tecido Adiposo Branco/patologia , Animais , Dieta Hiperlipídica , Fígado Gorduroso/terapia , Transplante de Microbiota Fecal , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos
6.
Gut ; 70(7): 1299-1308, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33004548

RESUMO

OBJECTIVE: Chronic alcohol consumption is an important cause of liver-related deaths. Specific intestinal microbiota profiles are associated with susceptibility or resistance to alcoholic liver disease in both mice and humans. We aimed to identify the mechanisms by which targeting intestinal microbiota can improve alcohol-induced liver lesions. DESIGN: We used human associated mice, a mouse model of alcoholic liver disease transplanted with the intestinal microbiota of alcoholic patients and used the prebiotic, pectin, to modulate the intestinal microbiota. Based on metabolomic analyses, we focused on microbiota tryptophan metabolites, which are ligands of the aryl hydrocarbon receptor (AhR). Involvement of the AhR pathway was assessed using both a pharmacological approach and AhR-deficient mice. RESULTS: Pectin treatment modified the microbiome and metabolome in human microbiota-associated alcohol-fed mice, leading to a specific faecal signature. High production of bacterial tryptophan metabolites was associated with an improvement of liver injury. The AhR agonist Ficz (6-formylindolo (3,2-b) carbazole) reduced liver lesions, similarly to prebiotic treatment. Conversely, inactivation of the ahr gene in alcohol-fed AhR knock-out mice abrogated the beneficial effects of the prebiotic. Importantly, patients with severe alcoholic hepatitis have low levels of bacterial tryptophan derivatives that are AhR agonists. CONCLUSIONS: Improvement of alcoholic liver disease by targeting the intestinal microbiota involves the AhR pathway, which should be considered as a new therapeutic target.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Intestinos/microbiologia , Hepatopatias Alcoólicas/etiologia , Microbiota/fisiologia , Pectinas/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carbazóis/farmacologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Fezes/química , Feminino , Humanos , Intestinos/fisiopatologia , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microbiota/efeitos dos fármacos , Pectinas/uso terapêutico , Prebióticos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética
8.
J Hepatol ; 66(4): 806-815, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27890791

RESUMO

BACKGROUND & AIMS: Alcoholic liver disease (ALD) is a leading cause of liver failure and mortality. In humans, severe alcoholic hepatitis is associated with key changes to intestinal microbiota (IM), which influences individual sensitivity to develop advanced ALD. We used the different susceptibility to ALD observed in two distinct animal facilities to test the efficiency of two complementary strategies (fecal microbiota transplantation and prebiotic treatment) to reverse dysbiosis and prevent ALD. METHODS: Mice were fed alcohol in two distinct animal facilities with a Lieber DeCarli diet. Fecal microbiota transplantation was performed with fresh feces from alcohol-resistant donor mice to alcohol-sensitive receiver mice three times a week. Another group of mice received pectin during the entire alcohol consumption period. RESULTS: Ethanol induced steatosis and liver inflammation, which were associated with disruption of gut homeostasis, in alcohol-sensitive, but not alcohol resistant mice. IM analysis showed that the proportion of Bacteroides was specifically lower in alcohol-sensitive mice (p<0.05). Principal coordinate analysis showed that the IM of sensitive and resistant mice clustered differently. We targeted IM using two different strategies to prevent alcohol-induced liver lesions: (1) pectin treatment which induced major modifications of the IM, (2) fecal microbiota transplantation which resulted in an IM very close to that of resistant donor mice in the sensitive recipient mice. Both methods prevented steatosis, liver inflammation, and restored gut homeostasis. CONCLUSIONS: Manipulation of IM can prevent alcohol-induced liver injury. The IM should be considered as a new therapeutic target in ALD. LAY SUMMARY: Sensitivity to alcoholic liver disease (ALD) is driven by intestinal microbiota in alcohol fed mice. Treatment of mice with alcohol-induced liver lesions by fecal transplant from alcohol fed mice resistant to ALD or with prebiotic (pectin) prevents ALD. These findings open new possibilities for treatment of human ALD through intestinal microbiota manipulation.


Assuntos
Disbiose/microbiologia , Disbiose/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Hepatopatias Alcoólicas/microbiologia , Hepatopatias Alcoólicas/prevenção & controle , Animais , Bacteroides/genética , Bacteroides/isolamento & purificação , Bacteroides/fisiologia , Ácidos e Sais Biliares/metabolismo , Fibras na Dieta/administração & dosagem , Modelos Animais de Doenças , Suscetibilidade a Doenças/microbiologia , Transplante de Microbiota Fecal , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pectinas/administração & dosagem , Prebióticos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA