Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281235

RESUMO

Multiple sclerosis (MS) is a demyelinating, autoimmune disease that affects a large number of young adults. Novel therapies for MS are needed considering the efficiency and safety limitations of current treatments. In our study, we investigated the effects of venlafaxine (antidepressant, serotonin-norepinephrine reuptake inhibitor), risperidone (atypical antipsychotic) and febuxostat (gout medication, xanthine oxidase inhibitor) in the cuprizone mouse model of acute demyelination, hypothesizing an antagonistic effect on TRPA1 calcium channels. Cuprizone and drugs were administered to C57BL6/J mice for five weeks and locomotor activity, motor performance and cold sensitivity were assessed. Mice brains were harvested for histological staining and assessment of oxidative stress markers. Febuxostat and metabolites of venlafaxine (desvenlafaxine) and risperidone (paliperidone) were tested for TRPA1 antagonistic activity. Following treatment, venlafaxine and risperidone significantly improved motor performance and sensitivity to a cold stimulus. All administered drugs ameliorated the cuprizone-induced deficit of superoxide dismutase activity. Desvenlafaxine and paliperidone showed no activity on TRPA1, while febuxostat exhibited agonistic activity at high concentrations. Our findings indicated that all three drugs offered some protection against the effects of cuprizone-induced demyelination. The agonistic activity of febuxostat can be of potential use for discovering novel TRPA1 ligands.


Assuntos
Febuxostat/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Neurotransmissores/uso terapêutico , Risperidona/uso terapêutico , Cloridrato de Venlafaxina/uso terapêutico , Animais , Corpo Caloso/efeitos dos fármacos , Cuprizona , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Febuxostat/farmacologia , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neurotransmissores/farmacologia , Risperidona/farmacologia , Canal de Cátion TRPA1/efeitos dos fármacos , Cloridrato de Venlafaxina/farmacologia
2.
Int J Mol Sci ; 20(18)2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31540178

RESUMO

Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features. Accordingly, we outline noncanonical operation of voltage-gated sodium, potassium, transient receptor potential (TRP), and hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Noncanonical features discussed include properties as a memory for prior voltage and chemical exposure, alternative ion conduction pathways, cluster formation, and silent subunits. Complementary to this main focus, the intention is also to transfer knowledge between fields, which become inevitably more separate due to their size.


Assuntos
Canais Iônicos/metabolismo , Dor/etiologia , Dor/metabolismo , Animais , Suscetibilidade a Doenças , Descoberta de Drogas , Humanos , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/genética , Dor/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA