Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Nutr ; 61(4): 1905-1918, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35066640

RESUMO

PURPOSE: The impact of tea constituents on the insulin-signaling pathway as well as their antidiabetic activity are still debated questions. Previous studies suggested that some tea components act as Protein Tyrosine Phosphatase 1B (PTP1B) inhibitors. However, their nature and mechanism of action remain to be clarified. This study aims to evaluate the effects of both tea extracts and some of their constituents on two main negative regulators of the insulin-signaling pathway, Low-Molecular-Weight Protein Tyrosine Phosphatase (LMW-PTP) and PTP1B. METHODS: The effects of cold and hot tea extracts on the enzyme activity were evaluated through in vitro assays. Active components were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Finally, the impact of both whole tea extracts and specific active tea components on the insulin-signaling pathway was evaluated in liver and muscle cells. RESULTS: We found that both cold and hot tea extracts inhibit LMW-PTP and PTP1B, even if with a different mechanism of action. We identified galloyl moiety-bearing catechins as the tea components responsible for this inhibition. Specifically, kinetic and docking analyses revealed that epigallocatechin gallate (EGCG) is a mixed-type non-competitive inhibitor of PTP1B, showing an IC50 value in the nanomolar range. Finally, in vitro assays confirmed that EGCG acts as an insulin-sensitizing agent and that the chronic treatment of liver cells with tea extracts results in an enhancement of the insulin receptor levels and insulin sensitivity. CONCLUSION: Altogether, our data suggest that tea components are able to regulate both protein levels and activation status of the insulin receptor by modulating the activity of PTP1B.


Assuntos
Resistência à Insulina , Proteínas Tirosina Fosfatases , Receptor de Insulina , Chá , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Insulina/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Chá/química
2.
Cancer Med ; 7(5): 1933-1943, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29573568

RESUMO

Tumor resistance to apoptosis is one the main causes of anticancer treatment failure. Previous studies showed that LMW-PTP overexpression enhances resistance of cancer cells to traditional anticancer drugs. Today, the role of LMW-PTP in inducing resistance to apoptosis in melanoma cells remains to be elucidated. Experimental setting include MTT assay, Annexin V/Pi method, and colony assay to assess whether silencing of LMW-PTP improves the sensitivity of A375 to dacarbazine, 5-FU, and radiotherapy. Pharmacological targeting of LMW-PTP was obtained using Morin, a LMW-PTP inhibitor. The ability of Morin to improve the effectiveness of anticancer drugs and radiotherapy was also studied. Moreover, PC3 cells were used as an alternative cellular model to confirm the data obtained with melanoma cells. We found that LMW-PTP silencing improves the effectiveness of dacarbazine, 5-FU, and radiotherapy. Identical results were obtained in vivo when Morin was used to target LMW-PTP. We demonstrated that Morin synergizes with dacarbazine, improving its cytotoxic activity. However, we showed that the combined treatment, Morin-anticancer drug, does not affect the viability of noncancerous cells. Knockdown of LMW-PTP sensitizes also PC3 cells to docetaxel and radiotherapy. In conclusion, we showed that LMW-PTP targeting improves effectiveness of anticancer drugs used for treatment of melanoma. Moreover, our results suggest that Morin could be used as adjuvant to improve the outcome of patients affected by metastatic melanoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Flavonoides/farmacologia , Melanoma/terapia , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas/genética , Tolerância a Radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Tratamento Farmacológico , Fluoruracila , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Melanoma/genética , Terapia de Alvo Molecular , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tolerância a Radiação/efeitos dos fármacos , Radioterapia , Regulação para Cima/efeitos dos fármacos
3.
Curr Med Chem ; 22(1): 80-111, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25139055

RESUMO

Results of several epidemiological studies have indicated that diabetes mellitus will become a global epidemic in the next decades, being more than 400 million the human subjects in the world affected by this disease in the 2030. Most of these subjects will be affected by type 2 diabetes mellitus (T2DM) whose diffusion is mainly related to excessive caloric upload, sedentary life and obesity. Typically, the treatment for T2DM is diet, weight control, physical activity or hypoglycaemic and/or lipid-lowering drugs. Unfortunately, these drugs often show low effectiveness or adverse side effects, thereby forcing patient to discontinue medical treatment. Nevertheless traditional medicine suggests the use of several formulations or medicinal foods to treat T2DM. Most of them are characterized by safety, low cost, effectiveness, and good availability. Before the advent of modern pharmacology, these remedies were used to treat diabetes and obesity or prevent their onset. Today, we know that their effectiveness is due to the presence of several bioactive compounds able to influence insulin signaling pathway and cellular metabolism. In the last decades, many efforts have been carried out to clarify their action mechanism. Here we provide a classification of the natural compounds that stimulate the insulin pathway, highlighting their effectiveness in controlling glycaemia on diabetic animal models or improving insulin signaling in cellular systems.


Assuntos
Produtos Biológicos/farmacologia , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Produtos Biológicos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Receptor de Insulina/agonistas , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA