Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 130(6): 496-507, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24899690

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a life-threatening disorder characterized by increased pulmonary artery pressure, remodeling of the pulmonary vasculature, and right ventricular failure. Loss of endothelium-derived nitric oxide (NO) and prostacyclin contributes to PH pathogenesis, and current therapies are targeted to restore these pathways. Phosphodiesterases (PDEs) are a family of enzymes that break down cGMP and cAMP, which underpin the bioactivity of NO and prostacyclin. PDE5 inhibitors (eg, sildenafil) are licensed for PH, but a role for PDE2 in lung physiology and disease has yet to be established. Herein, we investigated whether PDE2 inhibition modulates pulmonary cyclic nucleotide signaling and ameliorates experimental PH. METHODS AND RESULTS: The selective PDE2 inhibitor BAY 60-7550 augmented atrial natriuretic peptide- and treprostinil-evoked pulmonary vascular relaxation in isolated arteries from chronically hypoxic rats. BAY 60-7550 prevented the onset of both hypoxia- and bleomycin-induced PH and produced a significantly greater reduction in disease severity when given in combination with a neutral endopeptidase inhibitor (enhances endogenous natriuretic peptides), trepostinil, inorganic nitrate (NO donor), or a PDE5 inhibitor. Proliferation of pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension was reduced by BAY 60-7550, an effect further enhanced in the presence of atrial natriuretic peptide, NO, and treprostinil. CONCLUSIONS: PDE2 inhibition elicits pulmonary dilation, prevents pulmonary vascular remodeling, and reduces the right ventricular hypertrophy characteristic of PH. This favorable pharmacodynamic profile is dependent on natriuretic peptide bioactivity and is additive with prostacyclin analogues, PDE5 inhibitor, and NO. PDE2 inhibition represents a viable, orally active therapy for PH.


Assuntos
AMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Hipertensão Pulmonar/enzimologia , Inibidores de Fosfodiesterase/uso terapêutico , Animais , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/fisiologia , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Fosfodiesterase/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Triazinas/farmacologia , Triazinas/uso terapêutico
2.
Prostaglandins Other Lipid Mediat ; 107: 48-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23850788

RESUMO

Prostacyclin (PGI2) and its mimetics (iloprost, treprostinil, beraprost and MRE-269) are potent vasodilators (via IP-receptor activation) and a major therapeutic intervention for pulmonary hypertension (PH). These PGI2 mimetics have anti-proliferative and potent vasodilator effects on pulmonary vessels. We compared the relaxant effects induced by these recognized IP-agonists in isolated human pulmonary arteries (HPA) and veins (HPV). In addition, using selective antagonists, the possible activation of other prostanoid relaxant receptors (DP, EP4) was investigated. Iloprost and treprostinil were the more potent relaxant agonists when both vessels were analyzed. HPA were significantly more sensitive to iloprost than to treprostinil, pEC50 values: 7.94±0.06 (n=23) and 6.73±0.08 (n=33), respectively. In contrast, in HPV these agonists were equipotent. The relaxations induced by treprostinil were completely or partially inhibited by IP-antagonists in HPA or HPV, respectively. The effects of the IP-agonists were not significantly modified by the EP4 antagonist. Finally, DP-antagonists inhibited the relaxations induced by treprostinil in HPV, suggesting that the DP-receptor plays a role in treprostinil-induced relaxation in the HPV. These data suggest that iloprost and treprostinil should be the most effective clinically available agonists to decrease pulmonary vascular resistance and to prevent oedema formation (by similar decrease in HPA and HPV resistance) in PH patients.


Assuntos
Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Iloprosta/farmacologia , Vasodilatadores/farmacologia , Acetatos/farmacologia , Idoso , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Masculino , Pessoa de Meia-Idade , Mimetismo Molecular , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiologia , Veias Pulmonares/efeitos dos fármacos , Veias Pulmonares/fisiologia , Pirazinas/farmacologia , Receptores de Epoprostenol , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Vasodilatação
3.
Shock ; 35(5): 485-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21330953

RESUMO

Nitric oxide-mediated activation of large conductance calcium-activated potassium (BK) channels is considered an important underlying mechanism of sepsis-induced hypotension. Indeed, the nonselective K-channel inhibitor, tetraethylammonium chloride (TEA), has been proposed as a potential treatment to raise blood pressure in septic shock by virtue of its ability to inhibit BK channels. As experimental evidence has so far relied on pharmacological inhibition, we examined the effects of channel deletion using BKα subunit knockout (α, Slo) mice in two mouse models of polymicrobial sepsis, namely, intraperitoneal fecal slurry and cecal ligation and puncture. Comparison was made against TEA treatment in wild-type (WT) mice. Following slurry, BKα and WT mice developed similar degrees of hypotension over 10 h with no difference in cardiac output as assessed by echocardiography between groups. Tetraethylammonium chloride raised blood pressure significantly in septic WT mice, but had no effect on survival. However, following cecal ligation and puncture, a significantly reduced survival was seen in both BKα mice and (high-dose) TEA-treated WT mice compared with untreated WT animals. In conclusion, the BK channel does not appear to be integral to sepsis-induced hypotension but does affect survival through other mechanisms. The pressor effect of TEA may be related to effects on other potassium channels.


Assuntos
Hipotensão/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/deficiência , Sepse/microbiologia , Sepse/mortalidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Genótipo , Hipotensão/tratamento farmacológico , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Masculino , Camundongos , Camundongos Knockout , Bloqueadores dos Canais de Potássio/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sepse/tratamento farmacológico , Sepse/genética , Tetraetilamônio/uso terapêutico
4.
Shock ; 31(5): 535-41, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18838946

RESUMO

Excess production of NO and activation of vascular ATP-sensitive potassium (K(ATP)) channels are implicated in the hypotension and vascular hyporeactivity associated with endotoxic shock. Using a fluid-resuscitated endotoxic rat model, we compared the cardiovascular effects of an iNOS inhibitor and two distinct inhibitors of the K(ATP) channel. Endotoxin (LPS) was administered to anesthetized, spontaneously breathing, fluid-resuscitated adult male Wistar rats, in which MAP, aortic and renal blood flow, and hepatic microvascular oxygenation were monitored continuously. At 120 min, the iNOS inhibitor, GW273629, and the K(ATP)-channel inhibitors, PNU-37883A and glyburide, were administered separately, and their effects on hemodynamics and oxygenation were examined. We found that GW273629 increased MAP over and above the pressor effect achieved in sham animals. Inhibiting K(ATP) channels via the pore-forming subunit (PNU-37883A and high-dose glyburide) produced significant pressor effects, whereas inhibiting the sulfonylurea receptor with low-dose glyburide was ineffective. No agent reversed the fall in aortic or renal blood flow, the fall in hepatic microvascular oxygenation, or the metabolic acidosis that occurred in LPS-treated animals. We conclude that inhibition of the K(ATP) channel via the pore-forming, but not the sulfonylurea receptor subunit, increases blood pressure in a short-term endotoxic model. However, this was not accompanied by any improvement in macrocirculatory or microcirculatory organ blood flow nor reversal of metabolic acidosis. It therefore remains uncertain whether the iNOS pathway or the K(ATP) channel represents a potential target for drug development in the treatment of endotoxic shock.


Assuntos
Canais KATP/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Glibureto/farmacologia , Hemodinâmica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Ratos , Ratos Wistar , Choque Séptico/induzido quimicamente , Choque Séptico/tratamento farmacológico , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA