Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209691

RESUMO

A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.


Assuntos
Antivenenos/uso terapêutico , Terapia com Luz de Baixa Intensidade , Mordeduras de Serpentes/terapia , Venenos de Serpentes/antagonistas & inibidores , Animais , Ensaios Clínicos como Assunto , Humanos , Projetos de Pesquisa , Venenos de Serpentes/química , Venenos de Serpentes/toxicidade
2.
Sci Adv ; 3(9): eaao1551, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28959730

RESUMO

Lymphatic filariasis and onchocerciasis are two important neglected tropical diseases (NTDs) that cause severe disability. Control efforts are hindered by the lack of a safe macrofilaricidal drug. Targeting the Wolbachia bacterial endosymbionts in these parasites with doxycycline leads to a macrofilaricidal outcome, but protracted treatment regimens and contraindications restrict its widespread implementation. The Anti-Wolbachia consortium aims to develop improved anti-Wolbachia drugs to overcome these barriers. We describe the first screening of a large, diverse compound library against Wolbachia. This whole-organism screen, streamlined to reduce bottlenecks, produced a hit rate of 0.5%. Chemoinformatic analysis of the top 50 hits led to the identification of six structurally diverse chemotypes, the disclosure of which could offer interesting avenues of investigation to other researchers active in this field. An example of hit-to-lead optimization is described to further demonstrate the potential of developing these high-quality hit series as safe, efficacious, and selective anti-Wolbachia macrofilaricides.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequenas , Wolbachia/efeitos dos fármacos , Análise por Conglomerados , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Humanos , Reprodutibilidade dos Testes , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA