Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 172(3): 915-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23242425

RESUMO

Habitat invasibility has been found to increase dramatically following the alteration of ecosystem properties by a nonnative species. Robinia pseudoacacia, black locust, is a nitrogen-fixing, clonal tree species that aggressively invades open habitats and expands outside of plantations worldwide. Robinia pseudoacacia stands in Cape Cod National Seashore were particularly susceptible to a hurricane in 1991 that caused widespread blowdown and a dramatic reduction in Robinia in some stands. We used this change to investigate the lasting ecological effects of this nonnative species on this upland coastal ecosystem. We established replicate clusters of 20 × 20 m field plots within 50 m of each other that contained native pitch pine (Pinus rigida) and oak (Quercus velutina, Q. alba) forest, living Robinia stands, and stands in which Robinia was eliminated or reduced to less than 5% cover by the hurricane. Net nitrification and extractable soil nitrate concentration differed significantly between stand types, in the order Robinia > former Robinia > pine-oak. Nonnative species cover differed significantly between each stand type, in the order Robinia > former Robinia > pine-oak. Invasion of Robinia pseudoacacia increased soil net nitrification and nitrogen availability and precipitated a change in forest species composition that favored nonnative species. The presence of elevated soil nitrogen and nonnative species persisted at least 14 years after the removal of the original invading tree species, suggesting that the invasion of a tree species left a legacy of altered soil biogeochemistry, a higher number of nonnative species, and greater nonnative species cover.


Assuntos
Ecossistema , Fixação de Nitrogênio , Robinia/fisiologia , Árvores , Solo
2.
Endocrinology ; 151(7): 3277-85, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20463054

RESUMO

Hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons secrete dopamine, which inhibits pituitary prolactin (PRL) secretion. PRL has demonstrated neurotrophic effects on TIDA neuron development in PRL-, GH-, and TSH-deficient Ames (df/df) and Snell (dw/dw) dwarf mice. However, both PRL and PRL receptor knockout mice exhibit normal-sized TIDA neuron numbers, implying GH and/or TSH influence TIDA neuron development. The current study investigated the effect of porcine (p) GH on TIDA neuron development in Ames dwarf hypothalamus. Normal (DF/df) and dwarf mice were treated daily with pGH or saline beginning at 3 d of age for a period of 42 d. After treatment, brains were analyzed using catecholamine histofluorescence, tyrosine hydroxylase immunocytochemistry, and bromodeoxyuridine (BrdU) immunocytochemistry to detect BrdU incorporation. DF/df males and df/df treated with pGH experienced increased (P

Assuntos
Dopamina/metabolismo , Nanismo/metabolismo , Hormônio do Crescimento/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Catecolaminas/metabolismo , Feminino , Genótipo , Hormônio do Crescimento/administração & dosagem , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Neurônios/metabolismo , Fatores Sexuais , Suínos , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Aquat Toxicol ; 95(3): 230-8, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19850363

RESUMO

With maritime transport of crude oil from Alaska to California, there is significant potential for a catastrophic spill which could impact migrating salmon. Therefore, this study compared the lethal and sublethal metabolic actions of the water-accommodated fraction (WAF) and the chemically enhanced WAF (CEWAF, via Corexit 9500) of Prudhoe Bay crude oil in smolts of Chinook salmon (Onchorhyncus tshawytscha). After 96-h exposure to the CEWAF, the resulting LC50 was some 20 times higher (i.e., less toxic) than that of the WAF. Muscle and liver samples from surviving fish were collected and low-molecular weight metabolites were analyzed using one-dimensional (1)H and projections of two-dimensional (1)H J-resolved NMR. Principal component analysis (PCA), employed to analyze NMR spectra and identify most variance from the samples, revealed age-related metabolic changes in the fish within the replicated studies, but few consistent metabolic effects from the treatments. However, ANOVA results demonstrated that the dose-response metabolite patterns are both metabolite- and organ-dependent. In general, exposure to either WAF or CEWAF resulted in an increase of amino acids (i.e., valine, glutamine and glutamate) and a decrease of both organic osmolytes (i.e., glycerophosphorylcholine) and energetic substrates (i.e., succinate). The simultaneous increase of formate and decrease of glycerophosphorylcholine in the liver, or the decrease of glycerophosphorylcholine in muscle, may serve as sensitive sublethal biomarkers for WAF or CEWAF exposures, respectively. In conclusion, dispersant treatment significantly decreased the lethal potency of crude oil to salmon smolts, and the NMR-based metabolomics approach provided a sensitive means to characterize the sublethal metabolic actions.


Assuntos
Metabolômica , Petróleo/metabolismo , Petróleo/toxicidade , Salmão/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Dose Letal Mediana , Fígado/metabolismo , Músculos/metabolismo
4.
Chemosphere ; 74(5): 648-53, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19081602

RESUMO

Phase I whole sediment toxicity identification evaluation (TIE) methods have been developed to characterize the cause of toxicity as organic chemicals, metals, or ammonia. In Phase II identification treatments, resins added to whole sediment to reduce toxicity caused by metals and organics can be separated and eluted much like solid-phase extraction (SPE) columns are eluted for interstitial water. In this study, formulated reference sediments spiked with toxic concentrations of copper, fluoranthene, and nonylphenol were subjected to whole sediment and interstitial water TIE treatments to evaluate Phase I and II TIE procedures for identifying the cause of toxicity to Hyalella azteca. Phase I TIE treatments consisted of adding adsorbent resins to whole sediment, and using SPE columns to remove spiked chemicals from interstitial water. Phase II treatments consisted of eluting resins and SPE columns and the preparation and testing of eluates for toxicity and chemistry. Whole sediment resins and SPE columns significantly reduced toxicity, and the eluates from all treatments contained toxic concentrations of the spiked chemical except for interstitial water fluoranthene. Toxic unit analysis based on median lethal concentrations (LC50s) allowed for the comparison of chemical concentrations among treatments, and demonstrated that the bioavailability of some chemicals was reduced in some samples and treatments. The concentration of fluoranthene in the resin eluate closely approximated the original interstitial water concentration, but the resin eluate concentrations of copper and nonylphenol were much higher than the original interstitial water concentrations. Phase II whole sediment TIE treatments provided complementary lines of evidence to the interstitial water TIE results.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Água/química , Cobre/análise , Cobre/toxicidade , Fluorenos/análise , Fluorenos/toxicidade , Água Doce/análise , Água Doce/química , Sedimentos Geológicos/análise , Fenóis/análise , Fenóis/toxicidade
5.
Endocrinology ; 149(4): 2010-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18096658

RESUMO

Pituitary prolactin (PRL) secretion is inhibited by dopamine (DA) released into the portal circulation from hypothalamic tuberoinfundibular DA (TIDA) neurons. Ames (df/df) and Snell (dw/dw) dwarf mice lack PRL, GH, and TSH, abrogating feedback and resulting in a reduced hypophysiotropic TIDA population. In Ames df/df, ovine PRL administration for 30 d during early postnatal development increases the TIDA neuron number to normal, but 30 d PRL treatment of adult df/df does not. The present study investigated the effects of homologous PRL, administered via renal capsule pituitary graft surgery for 4 or 6 months, on hypothalamic DA neurons in adult Snell dw/dw mice using catecholamine histofluorescence, tyrosine hydroxylase immunocytochemistry, and bromodeoxyuridine immunocytochemistry. PRL treatment did not affect TIDA neuron number in normal mice, but 4- and 6-month PRL-treated dw/dw had significantly increased (P < or = 0.01) TIDA (area A12) neurons compared with untreated dw/dw. Snell dwarfs treated with PRL for 6 months had more (P < or = 0.01) TIDA neurons than 4-month PRL-treated dw/dw, but lower (P < or = 0.01) numbers than normal mice. Periventricular nucleus (area A14) neuron number was lower in dwarfs than in normal mice, regardless of treatment. Zona incerta (area A13) neuron number was unchanged among phenotypes and treatments. Prolactin was unable to induce differentiation of a normal-sized A14 neuron population in dw/dw. Bromodeoxyuridine incorporation was lower (P < or = 0.01) in 6-month PRL-treated normal mice than in 6-month PRL-treated dwarfs in the subventricular zone of the lateral ventricle and in the dentate gyrus, and lower (P < or = 0.05) in 4-month untreated dwarfs than in 4-month untreated normal mice in the median eminence and the periventricular area surrounding the third ventricle. Thus, a PRL-sensitive TIDA neuron population exists in adult Snell dwarf mice when replacement uses homologous hormone and/or a longer duration. This finding indicates that there is potential for neuronal differentiation beyond early developmental periods and suggests plasticity within the mature hypothalamus.


Assuntos
Dopamina/fisiologia , Nanismo Hipofisário/patologia , Hipotálamo/efeitos dos fármacos , Prolactina/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Bromodesoxiuridina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Nanismo Hipofisário/genética , Feminino , Masculino , Camundongos , Hipófise/transplante , Tirosina 3-Mono-Oxigenase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA