Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JPEN J Parenter Enteral Nutr ; 44(1): 69-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31441521

RESUMO

BACKGROUND: Preterm delivery and current nutrition strategies result in deficiencies of critical long-chain fatty acids (FAs) and lipophilic nutrients, increasing the risk of preterm morbidities. We sought to determine the efficacy of preventing postnatal deficits in FAs and lipophilic nutrients using an enteral concentrated lipid supplement in preterm piglets. METHODS: Preterm piglets were fed a baseline diet devoid of arachidonic acid (AA) and docosahexaenoic acid (DHA) and randomized to enteral supplementation as follows: (1) Intralipid (IL), (2) complex lipid supplement 1 (CLS1) with an AA:DHA ratio of 0.25, or (3) CLS2 with an AA:DHA ratio of 1.2. On day 8, plasma and tissue levels of FAs and lipophilic nutrients were measured and ileum histology performed. RESULTS: Plasma DHA levels decreased in the IL group by day 2. In contrast, DHA increased by day 2 compared with birth levels in both CLS1 and CLS2 groups. The IL and CLS1 groups demonstrated a continued decline in AA levels during the 8-day protocol, whereas AA levels in the CLS2 group on day 8 were comparable to birth levels. Preserving AA levels in the CLS2 group was associated with greater ileal villus height and muscular layer thickness. Lipophilic nutrients were effectively absorbed in plasma and tissues. CONCLUSIONS: Enteral administration of CLS1 and CLS2 demonstrated similar increases in DHA levels compared with birth levels. Only CLS2 maintained AA birth levels. Providing a concentrated complex lipid emulsion with an AA:DHA ratio > 1 is important in preventing postnatal AA deficits.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Ácidos Araquidônicos/metabolismo , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Nutrição Enteral/veterinária , Ração Animal , Animais , Animais Recém-Nascidos , Ácidos Araquidônicos/deficiência , Ácidos Docosa-Hexaenoicos/deficiência , Emulsões/administração & dosagem , Nutrientes , Distribuição Aleatória , Suínos
2.
Am J Physiol Lung Cell Mol Physiol ; 299(5): L599-606, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20656894

RESUMO

Cystic fibrosis (CF) patients display a fatty acid imbalance characterized by low linoleic acid levels and variable changes in arachidonic acid. This led to the recommendation that CF patients consume a high-fat diet containing >6% linoleic acid. We hypothesized that increased conversion of linoleic acid to arachidonic acid in CF leads to increased levels of arachidonate-derived proinflammatory metabolites and that this process is exacerbated by increasing linoleic acid levels in the diet. To test this hypothesis, we determined the effect of linoleic acid supplementation on downstream proinflammatory biomarkers in two CF models: 1) in vitro cell culture model using 16HBE14o(-) sense [wild-type (WT)] and antisense (CF) human airway epithelial cells; and 2) in an in vivo model using cftr(-/-) transgenic mice. Fatty acids were analyzed by gas chromatography-mass spectrometry (GC/MS), and IL-8 and eicosanoids were measured by ELISA. Neutrophils were quantified in bronchoalveolar lavage fluid from knockout mice following linoleic acid supplementation and exposure to aerosolized Pseudomonas LPS. Linoleic acid supplementation increased arachidonic acid levels in CF but not WT cells. IL-8, PGE(2), and PGF(2α) secretion were increased in CF compared with WT cells, with a further increase following linoleic acid supplementation. cftr(-/-) Mice supplemented with 100 mg of linoleic acid had increased arachidonic acid levels in lung tissue associated with increased neutrophil infiltration into the airway compared with control mice. These findings support the hypothesis that increasing linoleic acid levels in the setting of loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to increased arachidonic acid levels and proinflammatory mediators.


Assuntos
Ácido Araquidônico/biossíntese , Fibrose Cística/dietoterapia , Suplementos Nutricionais , Eicosanoides/biossíntese , Ácido Linoleico/administração & dosagem , Mucosa Respiratória/citologia , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Linhagem Celular , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Fibrose Cística/fisiopatologia , Modelos Animais de Doenças , Eicosanoides/metabolismo , Ácidos Graxos/metabolismo , Humanos , Inflamação/fisiopatologia , Interleucina-8/imunologia , Interleucina-8/metabolismo , Ácido Linoleico/uso terapêutico , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Knockout , Camundongos Transgênicos , Pseudomonas aeruginosa/imunologia
3.
J Lipid Res ; 49(9): 1946-54, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18480495

RESUMO

Specific fatty acid alterations have been described in the blood and tissues of cystic fibrosis (CF) patients. The principal alterations include decreased levels of linoleic acid (LA) and docosahexaenoic acid (DHA). We investigated the potential mechanisms of these alterations by studying the cellular uptake of LA and DHA, their distribution among lipid classes, and the metabolism of LA in a human bronchial epithelial cell model of CF. CF (antisense) cells demonstrated decreased levels of LA and DHA compared with wild type (WT, sense) cells expressing normal CFTR. Cellular uptake of LA and DHA was higher in CF cells compared with WT cells at 1 h and 4 h. Subsequent incorporation of LA and DHA into most lipid classes and individual phospholipids was also increased in CF cells. The metabolic conversion of LA to n-6 metabolites, including 18:3n-6 and arachidonic acid, was upregulated in CF cells, indicating increased flux through the n-6 pathway. Supplementing CF cells with DHA inhibited the production of LA metabolites and corrected the n-6 fatty acid defect. In conclusion, the evidence suggests that low LA level in cultured CF cells is due to its increased metabolism, and this increased LA metabolism is corrected by DHA supplementation.


Assuntos
Fibrose Cística/fisiopatologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Linoleico/metabolismo , Células Cultivadas , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Mucosa Respiratória/efeitos dos fármacos
4.
Plant Physiol ; 135(2): 814-27, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15173561

RESUMO

The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green fluorescent protein-SSE1 fusion protein and the lack of normal peroxisomes in sse1 mutant embryos. The green fluorescent protein-SSE1 colocalizes with the red fluorescent protein (RFP)-labeled peroxisomal markers RFP-peroxisome targeting signal 1 and peroxisome targeting signal 2-RFP in transgenic Arabidopsis. Each peroxisomal marker exhibits a normal punctate peroxisomal distribution in the wild type but not the sse1 mutant embryos. Further studies reported here were designed toward understanding carbon metabolism in the sse1 mutant. A time course study of dissected embryos revealed a dramatic rate decrease in oil accumulation and an increase in starch accumulation. Introduction of starch synthesis mutations into the sse1 background did not restore oil biosynthesis. This finding demonstrated that reduction in oil content in sse1 is not caused by increased carbon flow to starch. To identify the blocked steps in the sse1 oil deposition pathway, developing sse1 seeds were supplied radiolabeled oil synthesis precursors. The ability of sse1 to incorporate oleic acid, but not pyruvate or acetate, into triacylglycerol indicated a defect in the fatty acid biosynthetic pathway in this mutant. Taken together, the results point to a possible role for peroxisomes in the net synthesis of fatty acids in addition to their established function in lipid catabolism. Other possible interpretations of the results are discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Graxos/biossíntese , Peroxissomos/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica , Mutação , Peroxinas , Peroxissomos/metabolismo , Peroxissomos/ultraestrutura , Óleos de Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/genética , Sementes/fisiologia , Sementes/ultraestrutura
5.
Lipids ; 38(10): 1051-5, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14669970

RESUMO

FA ethyl esters (FAEE) are nonoxidative metabolites of ethanol produced by the esterification of FA and ethanol. FAEE have been implicated as mediators of ethanol-induced organ damage in vivo and in vitro, and are markers of ethanol intake. Upon ethanol intake, FAEE are synthesized in the liver and pancreas in significant quantities. There is limited information on the stimulation of FAEE synthesis upon addition of exogenous FA in vitro. HepG2 cells were incubated with ethanol alone, ethanol with 25 microM linoleate, and ethanol with 25 microM stearate. The amount of FAEE in human hepatoblastoma (HepG2) cells was determined 1-3 h after ethanol and FA addition. Stearate increased the FAEE concentration in HepG2 cells when incubated with the cells for 1 h, whereas linoleate did not increase the cellular FAEE concentration at any time. Ethyl palmitate, ethyl stearate, and ethyl oleate were the predominant FAEE species identified in all cases, independent of the specific supplemental FA added to the medium.


Assuntos
Etanol/farmacologia , Ácidos Graxos/biossíntese , Ácidos Esteáricos/farmacologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Esterificação , Ésteres , Humanos , Neoplasias Hepáticas/metabolismo
6.
Anticancer Res ; 22(2A): 537-43, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12014621

RESUMO

BACKGROUND: Current evidence from both experimental and human studies indicates that omega-6 polyunsaturated fatty acids (n-6 PUFAs) promote breast tumor development, whereas long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) exert suppressive effects. The ratio of n-6 to n-3 fatty acids appears to be an important factor in controlling tumor development. Human cells usually have a very high n-6/n-3 fatty acid ratio because they cannot convert n-6 PUFAs to n-3 PUFAs due to lack of an n-3 desaturase found in C. elegans. MATERIALS AND METHODS: Adenoviral strategies were used to introduce the C. elegans fat-1 gene encoding an n-3 fatty acid desaturase into human breast cancer cells followed by examination of the n-6/n-3 fatty acid ratio and growth of the cells. RESULTS: Infection of MCF-7 cells with an adenovirus carrying the fat-1 gene resulted in a high expression of the n-3 fatty acid desaturase. Lipid analysis indicated a remarkable increase in the levels of n-3 PUFAs accompanied with a large decrease in the contents of n-6 PUFAs, leading to a change of the n-6/n-3 ratio from 12.0 to 0.8. Accordingly, production of the eicosanoids derived from n-6 PUFA was reduced significantly in cells expressing the fat-1 gene. Importantly, the gene transfer induced mass cell death and inhibited cell proliferation. CONCLUSION: The gene transfer of the n-3 fatty acid desaturase, as a novel approach, can effectively modify the n-6/n-3 fatty acid ratio of human tumor cells and provide an anticancer effect, without the need of exogenous n-3 PUFA supplementation. These data also increase the understanding of the effects of n-3 fatty acids and the n-6/n-3 ratio on cancer prevention and treatment.


Assuntos
Neoplasias da Mama/metabolismo , Caenorhabditis elegans/enzimologia , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Adenoviridae/genética , Animais , Apoptose/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Caenorhabditis elegans/genética , Divisão Celular/fisiologia , Dinoprostona/biossíntese , Ácidos Graxos Dessaturases/biossíntese , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-6 , Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA