Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Endocrinol ; 28(9): 1571-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25000480

RESUMO

The mineralocorticoid receptor (MR) plays a central role in salt and water homeostasis via the kidney; however, inappropriate activation of the MR in the heart can lead to heart failure. A selective MR modulator that antagonizes MR signaling in the heart but not the kidney would provide the cardiovascular protection of current MR antagonists but allow for normal electrolyte balance. The development of such a pharmaceutical requires an understanding of coregulators and their tissue-selective interactions with the MR, which is currently limited by the small repertoire of MR coregulators described in the literature. To identify potential novel MR coregulators, we used T7 phage display to screen tissue-selective cDNA libraries for MR-interacting proteins. Thirty MR binding peptides were identified, from which three were chosen for further characterization based on their nuclear localization and their interaction with other MR-interacting proteins or, in the case of x-ray repair cross-complementing protein 6, its known status as an androgen receptor coregulator. Eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 modulated MR-mediated transcription in a ligand-, cell- and/or promoter-specific manner and colocalized with the MR upon agonist treatment when imaged using immunofluorescence microscopy. These results highlight the utility of phage display for rapid and sensitive screening of MR binding proteins and suggest that eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 may be potential MR coactivators whose activity is dependent on the ligand, cellular context, and target gene promoter.


Assuntos
Biblioteca de Peptídeos , Receptores de Mineralocorticoides/metabolismo , Antígenos Nucleares/metabolismo , Bacteriófago T7/metabolismo , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/metabolismo , Biblioteca Gênica , Células HEK293 , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Autoantígeno Ku , Ligantes , Microscopia de Fluorescência , Fator 1 de Elongação de Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Transcrição Gênica , Ativação Transcricional , Fatores de Elongação da Transcrição/metabolismo
2.
Endocr Relat Cancer ; 21(2): T33-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24532474

RESUMO

The heritable component of breast cancer accounts for only a small proportion of total incidences. Environmental and lifestyle factors are therefore considered to among the major influencing components increasing breast cancer risk. Endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment. The estrogenic property of EDCs has thus shown many associations between ongoing exposures and the development of endocrine-related diseases, including breast cancer. The environment consists of a heterogenous population of EDCs and despite many identified modes of action, including that of altering the epigenome, drawing definitive correlations regarding breast cancer has been a point of much discussion. In this review, we describe in detail well-characterized EDCs and their actions in the environment, their ability to disrupt mammary gland formation in animal and human experimental models and their associations with exposure and breast cancer risk. We also highlight the susceptibility of early-life exposure to each EDC to mediate epigenetic alterations, and where possible describe how these epigenome changes influence breast cancer risk.


Assuntos
Neoplasias da Mama/etiologia , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Animais , Epigênese Genética , Feminino , Genoma , Humanos , Estilo de Vida , Fitoestrógenos/farmacologia
3.
Breast Cancer Res Treat ; 112(3): 429-35, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18181018

RESUMO

Aromatase is a member of the cytochrome P450 superfamily of enzymes which catalyses the rate-limiting step in the biosynthesis of estrogens. A number of clinical studies have highlighted the importance of local estrogen production in adipose tissue. In particular, in the postmenopausal woman, the degree of her estrogenization is mainly determined by the extent of her adiposity and it is this extragonadal source of estrogen that likely contributes to breast cancer development and progression. The mechanisms regulating aromatase expression in adipose tissue however, have not been fully elucidated. In this study, we have characterised the expression of aromatase and its activity in a human preadipocyte cell strain, SGBS. Aromatase is expressed in SGBS cells and its expression and activity are strongly stimulated by forskolin (FSK) and phorbol 12-myristate-13-acetate (PMA) treatment. Consistent with this, FSK and PMA treatment also increased activation of the proximal aromatase promoter, promoter II. These findings mimic those that have previously been shown in isolated primary human preadipocytes. These data suggest that SGBS cells are a valuable model with which to further elucidate the mechanisms regulating aromatase expression, and therefore local estrogen synthesis in human adipose tissue.


Assuntos
Adipócitos/enzimologia , Aromatase/biossíntese , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Aromatase/metabolismo , Linhagem Celular , Colforsina/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Complementar/metabolismo , Progressão da Doença , Estrogênios/metabolismo , Humanos , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA