Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(2): 870-882, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37769943

RESUMO

Diet formulation in a pasture-based dairy system is a challenge as the quality and quantity of available pasture, which generally constitutes the base diet, is constantly changing. The objective of this paper is to cover a more in-depth review of the nutritional characteristics of pasture-based diets, identifying potential system, plant, and animal factors that condition pasture dietary inclusion in dairy cows. In practice, there is a wide diversity of pasture-based systems with predominant to minimal use of pasture requiring a more specific classification that potentially considers the amount and time of access to pasture, access to housing, length of grazing season, seasonality of calving, and level and method of supplementation. There are important differences in the nutritional quality between pasture species and even cultivars. However, under management practices that promote maintenance of pasture in a vegetative state as well as controlling the availability of pasture, it is possible to achieve high dry matter intakes (∼2.9%-3.4% of live weight) of pasture with moderate to high diet energy density, protein supply, and digestibility. The amount of pasture to include in the diet will depend on several factors, such as the type of production system, the cost of supplementary feeds, and the farmer's objectives, but inclusions of ∼40% to 50% of the diet seem to potentially reduce costs while apparently not limiting voluntary feed intake. Considering that there seems to be a continuum of intermediate management systems, a better understanding of the factors inherent to the feed ingredients used, as well as the use of nutrients by cows, and potential interactions between animal × system should be addressed in greater depth. This requires a meta-analysis approach, but given the diversity of the pasture-based system in practice, the existing information is highly fragmented. A clear definition of "subsystems" is necessary to direct the future research and development of mechanistic models.


Assuntos
Lactação , Leite , Animais , Bovinos , Feminino , Humanos , Ração Animal/análise , Indústria de Laticínios/métodos , Dieta/veterinária , Ingestão de Alimentos , Leite/metabolismo
2.
J Anim Sci ; 88(5): 1777-85, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20081088

RESUMO

Sulfur-induced polioencephalomalacia (sPEM), a neurological disorder affecting ruminants, is associated with consumption of diets with increased S (high-S). High-S water is commonly found in many western states and is a major source of dietary S for grazing cattle. Consumption of high-S water has been associated with sPEM and decreased performance. Identification of a feed supplement that would counteract the negative effects of high-S water would decrease the incidence of sPEM and prevent performance reductions in regions with problematic water sources. The objectives of this study were to 1) determine the effects of administering high-S drinking water to forage-fed feedlot steers on health and performance, and 2) determine the effectiveness of clinoptilolite, a clay mineral with increased cation-exchange capacity, in negating the effects of high-S drinking water. Yearling steers (n = 96; 318.2 +/- 2.1 kg of BW) were randomly assigned to 1 of 4 treatments for a 77-d trial period: control with low-S water (566 mg of SO(4)/L), high-S water (3,651 mg of SO(4)/L), or high-S water plus clinoptilolite supplemented at 2.5 or 5.0% of the diet DM. Feed and water consumption were measured daily, and all steers were weighed on d -2, -1, 29, 53, 76, and 77. Plasma samples were collected on d 0, 58, and 77, and liver samples on d 0 and 77. There was a greater (P or= 0.546) in ADG or G:F were observed. Plasma Cu decreased (P = 0.029) to a greater magnitude in high-S water steers than the control steers over the 77-d trial period. Mineral analyses of hepatic tissue from randomly selected healthy steers from each treatment group (n = 10 per treatment) showed an interaction (P

Assuntos
Ração Animal/análise , Doenças dos Bovinos/prevenção & controle , Encefalomalacia/veterinária , Enxofre/efeitos adversos , Água/química , Zeolitas/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Bovinos , Doenças dos Bovinos/induzido quimicamente , Doenças dos Bovinos/tratamento farmacológico , Dexametasona/uso terapêutico , Dieta/veterinária , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Encefalomalacia/induzido quimicamente , Encefalomalacia/tratamento farmacológico , Encefalomalacia/prevenção & controle , Masculino , Enxofre/química , Tiamina/uso terapêutico
3.
Animal ; 4(5): 702-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-22444122

RESUMO

Elevated dietary nitrate (NO3-) is associated with production losses in ruminant livestock, resulting in substantial economic losses incurred by producers. Severe drought, fertilization practices and poorly maintained pastures increase the risk of elevated NO3- intake among cattle and sheep. Nitrate is metabolized to nitrite (NO2-) in the rumen and further reduced to ammonia. Ruminants consuming high dietary NO3- vary in ability to efficiently reduce excess NO2- to ammonia. This leads to methemoglobin formation and ultimately NO3- toxicity signs. Variation in individual tolerance to elevated dietary NO3- can be partially attributed to rate and duration of exposure, rate of elimination, metabolism, species and dose. Our objectives were to confirm and quantify variation in individual tolerance to subacute levels of dietary NO3-, and determine if individuals could be identified as highly or lowly tolerant to elevated dietary NO3- based on production traits, plasma analytes and(or) signs of subacute NO3- toxicity. Purebred Suffolk ewes were administered supplement mixed with tap water (control; n = 8) or potassium nitrate (NO3- treated; 300 mg NO3-/kg BW daily; n = 47) for 8 days. Coefficients of variation (CV) indicated that supplement intake was more variable in NO3- treated ewes (CV = 59.3%) than in control ewes (CV = 13.6%). Among NO3- treated ewes, six ewes highly tolerant and six ewes lowly tolerant to elevated dietary NO3- were identified based on individual performance, NO3- treated supplement intake, and signs of toxicity. Supplement intake was lower (P < 0.0001) in NO3- treated ewes than in control ewes, indicating elevated dietary NO3- influences feed intake. Supplement intake differed (P < 0.0001) between control, highly tolerant and lowly tolerant ewes. Supplement intake of highly and lowly tolerant ewes was 82% and 23%, respectively, of the control ewes' intake. Weight change and plasma concentrations of NO2-, cortisol, glucose and retinol were not different (P 0.38) among control, highly tolerant and lowly tolerant ewes. Plasma urea nitrogen (PUN) levels were not different (P = 0.25) between control and lowly tolerant ewes, but were lower (P = 0.02) in highly tolerant ewes than in control ewes. Furthermore, PUN and NO3- treated supplement intake were highly correlated (0.71; P < 0.0001) in lowly tolerant ewes. These results confirm and quantify variation in response to subacute levels of dietary NO3- and indicate that individuals can be identified as highly or lowly tolerant to elevated dietary NO3- based on their performance and NO3- toxicity signs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA