Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628201

RESUMO

Fatty acids (FAs) are essential components of the central nervous system (CNS), where they exert multiple roles in health and disease. Among the FAs, docosahexaenoic acid (DHA) has been widely recognized as a key molecule for neuronal function and cell signaling. Despite its relevance, the molecular pathways underlying the beneficial effects of DHA on the cells of the CNS are still unclear. Here, we summarize and discuss the molecular mechanisms underlying the actions of DHA in neural cells with a special focus on processes of survival, morphological development, and synaptic maturation. In addition, we examine the evidence supporting a potential therapeutic role of DHA against CNS tumor diseases and tumorigenesis. The current results suggest that DHA exerts its actions on neural cells mainly through the modulation of signaling cascades involving the activation of diverse types of receptors. In addition, we found evidence connecting brain DHA and ω-3 PUFA levels with CNS diseases, such as depression, autism spectrum disorders, obesity, and neurodegenerative diseases. In the context of cancer, the existing data have shown that DHA exerts positive actions as a coadjuvant in antitumoral therapy. Although many questions in the field remain only partially resolved, we hope that future research may soon define specific pathways and receptor systems involved in the beneficial effects of DHA in cells of the CNS, opening new avenues for innovative therapeutic strategies for CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central , Ácidos Graxos Ômega-3 , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Humanos
2.
PLoS One ; 9(5): e96625, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24796752

RESUMO

ATP-gated P2X7 receptor (P2RX7) channel is a key component for purinergic signaling and plays important roles in the innate immune response in mammals. However, the expression, molecular properties and immune significances of P2RX7 in lower vertebrates are still very limited. Here we identified and characterized a novel bony fish P2RX7 homologue cDNA, termed poP2RX7, in Japanese flounder (Paralichthys olivaceus). PoP2RX7 protein shares about 60-88% sequence similarity and 45-78% sequence identity with known vertebrate P2RX7 proteins. Phylogenetic analysis placed poP2RX7 and other P2RX7 proteins within their own cluster apart from other P2RX members. While the functional poP2RX7 channel shares structural features in common with known P2RX7 homologs, electrophysiological studies revealed that BzATP, the more potent agonist for known mammalian and fish P2RX7s, shows similar potency to ATP in poP2RX7 activation. poP2RX7 mRNA constitutively expressed in all examined tissues from unstimulated healthy Japanese flounder with dominant expression in hepatopancreas and the lowest expression in head kidney, trunk kidney, spleen and gill. poP2RX7 mRNA expression, however, was significantly induced in Japanese flounder head kidney primary cells by Poly(I:C) and bacterial endotoxin LPS stimulations. In vivo experiments further revealed that poP2RX7 gene expression was substantially up-regulated by immune challenge with infectious bacteria Edwardsiella tarda and Vibrio anguillarum. Moreover, activation of poP2RX7 results in an increased gene expression of multifunctional cytokines IL-1ß and IL-6 in the head kidney primary cells. Collectively, we identified and characterized a novel fish P2RX7 homolog which is engaged in Japanese flounder innate immune response probably through modulation of pro-inflammatory cytokines expression.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Peixes/metabolismo , Linguado/imunologia , Linguado/metabolismo , Imunidade Inata , Receptores Purinérgicos P2X7/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Citocinas/metabolismo , Primers do DNA , DNA Complementar/metabolismo , Edwardsiella tarda , Eletrofisiologia , Feminino , Proteínas de Peixes/imunologia , Linguado/microbiologia , Regulação da Expressão Gênica , Rim/metabolismo , Masculino , Dados de Sequência Molecular , Filogenia , Receptores Purinérgicos P2X7/imunologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Vibrio
3.
J Biol Chem ; 278(38): 36777-85, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12819199

RESUMO

To elucidate the role of extracellular histidines in the modulation of the rat P2X4 receptor by trace metals, we generated single, double, and triple histidine mutants for residues 140, 241, and 286, replacing them with alanines. cDNAs for the wild-type and receptor mutants were expressed in Xenopus laevis oocytes and in human embryonic kidney 293 cells and examined by the two electrode and patch clamp techniques, respectively. Whereas copper inhibited concentration-dependently the ATP-gated currents in the wild-type and in the single or double H241A and H286A receptor mutants, all receptors containing H140A were insensitive to copper in both cell systems. The characteristic bell-shaped concentration-response curve of zinc observed in the wild-type receptor became sigmoid in both oocytes and human embryonic kidney cells expressing the H140A mutant; in these mutants, the zinc potentiation was 2.5-4-fold larger than in the wild-type. Results with the H140T and H140R mutants further support the importance of a histidine residue at this position. We conclude that His-140 is critical for the action of copper, indicating that this histidine residue, but not His-241 or His-286, forms part of the inhibitory allosteric metal-binding site of the P2X4 receptor, which is distinct from the putative zinc facilitator binding site.


Assuntos
Cobre/metabolismo , Histidina/química , Receptores Purinérgicos P2/química , Zinco/metabolismo , Trifosfato de Adenosina/metabolismo , Sítio Alostérico , Animais , Sítios de Ligação , Linhagem Celular , Cobre/química , Cobre/farmacologia , Cisteína/química , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Humanos , Metais/farmacologia , Mutagênese Sítio-Dirigida , Mutação , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ratos , Receptores Purinérgicos P2X4 , Fatores de Tempo , Transfecção , Xenopus laevis , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA