Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 276(42): 38636-44, 2001 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-11507101

RESUMO

Multidrug resistance protein 1 (MRP1) is capable of actively transporting a wide range of conjugated and unconjugated organic anions. The protein can also transport additional conjugated and unconjugated compounds in a GSH- or S-methyl GSH-stimulated manner. How MRP1 binds and transports such structurally diverse substrates is not known. We have used [(3)H]leukotriene C(4) (LTC(4)), a high affinity glutathione-conjugated physiological substrate, to photolabel intact MRP1, as well as fragments of the protein expressed in insect cells. These studies revealed that: (i) LTC(4) labels sites in the NH(2)- and COOH-proximal halves of MRP1, (ii) labeling of the NH(2)-half of MRP1 is localized to a region encompassing membrane-spanning domain (MSD) 2 and nucleotide binding domain (NBD) 1, (iii) labeling of this region is dependent on the presence of all or part of the cytoplasmic loop (CL3) linking MSD1 and MSD2, but not on the presence of MSD1, (iv) labeling of the NH(2)-proximal site is preferentially inhibited by S-methyl GSH, (v) labeling of the COOH-proximal half of the protein occurs in a region encompassing transmembrane helices 14-17 and appears not to require NBD2 or the cytoplasmic COOH-terminal region of the protein, (vi) labeling of intact MRP1 by LTC(4) is strongly attenuated in the presence of ATP and vanadate, and this decrease in labeling is attributable to a marked reduction in LTC(4) binding to the NH(2)-proximal site, and (vii) the attenuation of LTC(4) binding to the NH(2)-proximal site is a consequence of ATP hydrolysis and trapping of Vi-ADP exclusively at NBD2. These data suggest that MRP1-mediated transport involves a conformational change, driven by ATP hydrolysis at NBD2, that alters the affinity with which LTC(4) binds to one of two sites composed, at least in part, of elements in the NH(2)-proximal half of the protein.


Assuntos
Leucotrieno C4/química , Leucotrieno C4/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Western Blotting , Linhagem Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , DNA Complementar/metabolismo , Humanos , Hidrólise , Insetos , Mutação , Marcadores de Fotoafinidade/farmacologia , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Tripsina/farmacologia , Células Tumorais Cultivadas , Vanadatos/farmacologia
2.
Cancer Res ; 54(22): 5902-10, 1994 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-7954421

RESUMO

We have previously identified and characterized a novel member of the ATP-binding cassette superfamily of transport proteins, multidrug resistance protein (MRP), and subsequently demonstrated that its overexpression is sufficient to confer multidrug resistance on previously sensitive cells (Cole et al., Science (Washington DC), 258: 1650-1654, 1992; Grant et al., Cancer Res. 54: 357-361, 1994). In the present study, we have transfected two different eukaryotic expression vectors containing MRP complementary DNA into HeLa cells to study the pharmacological phenotype produced exclusively by overexpression of human MRP. The drug resistance patterns of the two MRP-transfected cell populations were similar. They were characterized by a moderate (5- to 15-fold) level of resistance to doxorubicin, daunorubicin, epirubicin, vincristine, and etoposide, and a low (< or = 3-fold) level of resistance to taxol, vinblastine, and colchicine. The transfectants were not resistant to 9-alkyl anthracyclines, mitoxantrone, or cisplatin. The MRP-transfected cells were also resistant to some heavy metal anions including arsenite, arsenate, and trivalent and pentavalent antimonials but were not resistant to cadmium chloride. Accumulation of radiolabeled vincristine was reduced by 45% in the MRP-transfected cells and could be restored to the levels found in sensitive cells by depletion of ATP. Rates of vincristine efflux did not differ greatly in the sensitive and resistant cells. The cytotoxic effects of vincristine and doxorubicin could be enhanced in a dose-dependent fashion by coadministration of verapamil. Cyclosporin A also increased vincristine toxicity but had less effect on doxorubicin toxicity. The degree of chemosensitization by verapamil and cyclosporin A was similar in MRP-transfected cells and in cells transfected with the vector alone, suggesting that sensitization involved mechanisms independent of MRP expression. Verapamil and cyclosporin A caused a modest increase in vincristine accumulation in the resistant cells but did not restore levels to those of the sensitive cells. Taken together, these data indicate that drug-resistant cell lines generated by transfection with MRP complementary DNA display some but not all of the characteristics of MRP-overexpressing cell lines produced by drug selection in vitro. They further demonstrate that the multidrug resistance phenotype conferred by MRP is similar but not identical to that conferred by P-glycoprotein and includes resistance to arsenical and antimonial oxyanions.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/análise , Antineoplásicos/farmacologia , DNA Complementar/genética , RNA Mensageiro/análise , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Antineoplásicos/metabolismo , Ciclosporina/farmacologia , Doxorrubicina/metabolismo , Resistência a Múltiplos Medicamentos/genética , Vetores Genéticos , Células HeLa , Humanos , Peso Molecular , RNA Mensageiro/química , Transfecção , Verapamil/farmacologia , Vincristina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA