Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 22(15): 4967-74, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22765895

RESUMO

mTOR is a critical regulator of cellular signaling downstream of multiple growth factors. The mTOR/PI3K/AKT pathway is frequently mutated in human cancers and is thus an important oncology target. Herein we report the evolution of our program to discover ATP-competitive mTOR inhibitors that demonstrate improved pharmacokinetic properties and selectivity compared to our previous leads. Through targeted SAR and structure-guided design, new imidazopyridine and imidazopyridazine scaffolds were identified that demonstrated superior inhibition of mTOR in cellular assays, selectivity over the closely related PIKK family and improved in vivo clearance over our previously reported benzimidazole series.


Assuntos
Inibidores de Proteínas Quinases/química , Piridazinas/química , Piridinas/química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Benzimidazóis/química , Sítios de Ligação , Ligação Competitiva , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Imidazóis/química , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Estrutura Terciária de Proteína , Piridazinas/síntese química , Piridazinas/farmacocinética , Piridinas/síntese química , Piridinas/farmacocinética , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
2.
Chem Res Toxicol ; 23(11): 1743-52, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20825217

RESUMO

Compound 1, (7-methoxy-N-((6-(3-methylisothiazol-5-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methyl)-1,5-naphthyridin-4-amine) is a potent, selective inhibitor of c-Met (mesenchymal-epithelial transition factor), a receptor tyrosine kinase that is often deregulated in cancer. Compound 1 displayed desirable pharmacokinetic properties in multiple preclinical species. Glutathione trapping studies in liver microsomes resulted in the NADPH-dependent formation of a glutathione conjugate. Compound 1 also exhibited very high in vitro NADPH-dependent covalent binding to microsomal proteins. Species differences in covalent binding were observed, with the highest binding in rats, mice, and monkeys (1100-1300 pmol/mg/h), followed by dogs (400 pmol/mg/h) and humans (144 pmol/mg/h). This covalent binding to protein was abolished by coincubation with glutathione. Together, these in vitro data suggest that covalent binding and glutathione conjugation proceed via bioactivation to a chemically reactive intermediate. The cytochrome (CYP) P450 enzymes responsible for this bioactivation were identified as cytochrome P450 3A4, 1A2, and 2D6 in human and cytochrome P450 2A2, 3A1, and 3A2 in rats. The glutathione metabolite was detected in the bile of rats and mice, thus demonstrating bioactivation occurring in vivo. Efforts to elucidate the structure of the glutathione adduct led to the isolation and characterization of the metabolite by NMR and mass spectrometry. The analytical data confirmed conclusively that the glutathione conjugation was on the 4-C position of the isothiazole ring. Such P450-mediated bioactivation of an isothiazole or thiazole group has not been previously reported. We propose a mechanism of bioactivation via sulfur oxidation followed by glutathione attack at the 4-position with subsequent loss of water resulting in the formation of the glutathione conjugate. Efforts to reduce bioactivation without compromising potency and pharmacokinetics were undertaken in order to minimize the potential risk of toxicity. Because of the exemplary pharmacokinetic/pharmacodynamic (PK/PD) properties of the isothiazole group, initial attempts were focused on introducing alternative metabolic soft spots into the molecule. These efforts resulted in the discovery of 7-(2-methoxyethoxy)-N-((6-(3-methyl-5-isothiazolyl)[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methyl)-1,5-naphthyridin-4-amine (compound 2), with the major metabolic transformation occurring on the naphthyridine ring alkoxy substituent. However, a glutathione conjugate of compound 2 was produced in vitro and in vivo in a manner similar to that observed for compound 1. Furthermore, the covalent binding was high across species (360, 300, 529, 208, and 98 pmol/mg/h in rats, mice, dogs, monkeys, and humans, respectively), but coincubation with glutathione reduced the extent of covalent binding. The second viable alternative in reducing bioactivation involved replacing the isothiazole ring with bioisosteric heterocycles. Replacement of the isothiazole ring with an isoxazole or a pyrazole reduced the bioactivation while retaining the desirable PK/PD characteristics of compounds 1 and 2.


Assuntos
Naftiridinas/metabolismo , Piridazinas/metabolismo , Tiazóis/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Avaliação Pré-Clínica de Medicamentos , Glutationa/química , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Microssomos Hepáticos/metabolismo , Conformação Molecular , Naftiridinas/química , Naftiridinas/farmacocinética , Naftiridinas/toxicidade , Ligação Proteica , Piridazinas/química , Piridazinas/farmacocinética , Piridazinas/toxicidade , Ratos , Fatores de Risco , Espectrometria de Massas por Ionização por Electrospray , Tiazóis/química , Tiazóis/toxicidade
3.
Drug Metab Dispos ; 30(7): 771-7, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12065435

RESUMO

The pharmacokinetics and oral bioavailability of (R)-N-[4-[2-[[2-hydroxy-2-(pyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-[4-[4-(trifluoromethylphenyl]thiazol-2-yl]benzenesulfonamide (1), a 3-pyridyl thiazole benzenesulfonamide beta3-adrenergic receptor agonist, were investigated in rats, dogs, and monkeys. Systemic clearance was higher in rats (approximately 30 ml/min/kg) than in dogs and monkeys (both approximately 10 ml/min/kg), and oral bioavailability was 17, 27, and 4%, respectively. Since systemic clearance was 25 to 40% of hepatic blood flow in these species, hepatic extraction was expected to be low, and it was likely that oral bioavailability was limited either by absorption or a large first-pass effect in the gut. The absorption and excretion of 3H-labeled 1 were investigated in rats, and only 28% of the administered radioactivity was orally absorbed. Subsequently, the hepatic extraction of 1 was evaluated in rats (30%) and monkeys (47%). The low oral bioavailability in rats could be explained completely by poor oral absorption and hepatic first-pass metabolism; in monkeys, oral absorption was either less than in rats or first-pass extraction in the gut was greater. In an attempt to increase oral exposure, the pharmacokinetics and oral bioavailability of two potential prodrugs of 1, an N-ethyl [(R)-N-[4-[2-[ethyl[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4-[4-(trifluoromethyl)phenyl]thiazol-2-yl]benzenesulfonamide; 2] and a morpholine derivative [(R)-N-[4-[2-[2-(3-pyridinyl)morpholin-4-yl]ethyl]phenyl]-4-[4-[4-(trifluoromethyl)- phenyl]thiazol-2-yl]benzenesulfonamide; 3], were evaluated in monkeys. Conversion to 1 was low (<3%) with both derivatives, and neither entity was an effective prodrug, but the oral bioavailability of 3 (56%) compared with 1 (4%) was significantly improved. The hypothesis that the increased oral bioavailability of 3 was due to a reduction in hydrogen bonding sites in the molecule led to the design of (R)-N-[4-[2-[[2-hydroxy-2-(pyridin-2-yl)ethyl]amino]ethyl]phenyl]-4-[4-(4-trifluoromethylphenyl)thiazol-2-yl]benzenesulfonamide (4), a 2-pyridyl beta3-adrenergic receptor agonist with improved oral bioavailability in rats and monkeys.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3 , Agonistas Adrenérgicos beta/farmacocinética , Sulfonamidas/farmacocinética , Tiazóis/farmacocinética , Administração Oral , Agonistas Adrenérgicos beta/química , Agonistas Adrenérgicos beta/metabolismo , Animais , Disponibilidade Biológica , Cães , Avaliação Pré-Clínica de Medicamentos , Macaca mulatta , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 3/fisiologia , Sulfonamidas/química , Sulfonamidas/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Benzenossulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA