Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 38(39): 8313-8328, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30093537

RESUMO

The medial prefrontal cortex and the basolateral amygdala (BLA) are essential for discriminating between harmful and safe stimuli. The primary auditory cortex (Te1) sends projections to both sites, but whether and how it interacts with these areas during fear discrimination are poorly understood. Here we show that in male rats that can differentiate between a new tone and a threatening one, the selective optogenetic inhibition of Te1 axon terminals into the prelimbic (PL) cortex shifted discrimination to fear generalization. Meanwhile, no effects were detected when Te1 terminals were inhibited in the BLA. Using a combination of local field potential and multiunit recordings, we show that in animals that discriminate successfully between a new tone and a harmful one, the activity of the Te1 and the PL cortex becomes immediately and tightly synchronized in the slow-gamma range (40-70 Hz) at the onset of the new tone. This enhanced synchronization was not present in other frequency ranges, such as the theta range. Critically, the level of gamma synchrony predicted the behavioral choice (i.e., no freezing or freezing) of the animals. Moreover, in the same rats, gamma synchrony was absent before the fear-learning trial and when animals should discriminate between an olfactory stimulus and the auditory harmful one. Thus, our findings reveal that the Te1 and the PL cortex dynamically establish a functional connection during auditory fear-discrimination processes, and that this corticocortical oscillatory mechanism drives the behavioral choice of the animals.SIGNIFICANCE STATEMENT Identifying neural networks that infer safety versus danger is of great interest in the scientific field. Fear generalization reduces the chances of an animal's survival and leads to psychiatric diseases, such as post-traumatic stress disorders and phobias in humans. Here we demonstrate that animals able to differentiate a new tone from a previous threating tone showed synchronization between the prefrontal and primary auditory cortices. Critically, this connectivity precedes and predicts the behavioral outcome of the animal. Optogenetic inhibition of this functional connectivity leads to fear generalization. To the best of our knowledge, this study is the first to demonstrate that a corticocortical dialogue occurring between sensory and prefrontal areas is a key node for fear-discrimination processes.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Discriminação Psicológica/fisiologia , Medo/fisiologia , Ritmo Gama , Córtex Pré-Frontal/fisiologia , Estimulação Acústica , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico , Sincronização Cortical , Generalização Psicológica , Masculino , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética , Ratos Wistar
2.
J Neurosci ; 36(5): 1647-59, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843646

RESUMO

Negative experiences are quickly learned and long remembered. Key unresolved issues in the field of emotional memory include identifying the loci and dynamics of memory storage and retrieval. The present study examined neural activity in the higher-order auditory cortex Te2 and basolateral amygdala (BLA) and their crosstalk during the recall of recent and remote fear memories. To this end, we obtained local field potentials and multiunit activity recordings in Te2 and BLA of rats that underwent recall at 24 h and 30 d after the association of an acoustic conditioned (CS, tone) and an aversive unconditioned stimulus (US, electric shock). Here we show that, during the recall of remote auditory threat memories in rats, the activity of the Te2 and BLA is highly synchronized in the theta frequency range. This functional connectivity stems from memory consolidation processes because it is present during remote, but not recent, memory retrieval. Moreover, the observed increase in synchrony is cue and region specific. A preponderant Te2-to-BLA directionality characterizes this dialogue, and the percentage of time Te2 theta leads the BLA during remote memory recall correlates with a faster latency to freeze to the auditory conditioned stimulus. The blockade of this information transfer via Te2 inhibition with muscimol prevents any retrieval-evoked neuronal activity in the BLA and animals are unable to retrieve remote memories. We conclude that memories stored in higher-order sensory cortices drive BLA activity when distinguishing between learned threatening and neutral stimuli. SIGNIFICANCE STATEMENT: How and where in the brain do we store the affective/motivational significance of sensory stimuli acquired through life experiences? Scientists have long investigated how "limbic" structures, such as the amygdala, process affective stimuli. Here we show that retrieval of well-established threat memories requires the functional interplay between higher-order components of the auditory cortex and the amygdala via synchrony in the theta range. This functional connectivity is a result of memory consolidation processes and is characterized by a predominant cortical to amygdala direction of information transfer. This connectivity is predictive of the animals' ability to recognize auditory stimuli as aversive. In the absence of this necessary cortical activity, the amygdala is unable to distinguish between frightening and neutral stimuli.


Assuntos
Estimulação Acústica/efeitos adversos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Rememoração Mental/fisiologia , Reflexo de Sobressalto/fisiologia , Córtex Somatossensorial/fisiologia , Estimulação Acústica/métodos , Animais , Medo/psicologia , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA