Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Europace ; 25(2): 716-725, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36197749

RESUMO

AIMS: Anti-tachycardia pacing (ATP) is a reliable electrotherapy to painlessly terminate ventricular tachycardia (VT). However, ATP is often ineffective, particularly for fast VTs. The efficacy may be enhanced by optimized delivery closer to the re-entrant circuit driving the VT. This study aims to compare ATP efficacy for different delivery locations with respect to the re-entrant circuit, and further optimize ATP by minimizing failure through re-initiation. METHODS AND RESULTS: Seventy-three sustained VTs were induced in a cohort of seven infarcted porcine ventricular computational models, largely dominated by a single re-entrant pathway. The efficacy of burst ATP delivered from three locations proximal to the re-entrant circuit (septum) and three distal locations (lateral/posterior left ventricle) was compared. Re-initiation episodes were used to develop an algorithm utilizing correlations between successive sensed electrogram morphologies to automatically truncate ATP pulse delivery. Anti-tachycardia pacing was more efficacious at terminating slow compared with fast VTs (65 vs. 46%, P = 0.000039). A separate analysis of slow VTs showed that the efficacy was significantly higher when delivered from distal compared with proximal locations (distal 72%, proximal 59%), being reversed for fast VTs (distal 41%, proximal 51%). Application of our early termination detection algorithm (ETDA) accurately detected VT termination in 79% of re-initiated cases, improving the overall efficacy for proximal delivery with delivery inside the critical isthmus (CI) itself being overall most effective. CONCLUSION: Anti-tachycardia pacing delivery proximal to the re-entrant circuit is more effective at terminating fast VTs, but less so slow VTs, due to frequent re-initiation. Attenuating re-initiation, through ETDA, increases the efficacy of delivery within the CI for all VTs.


Assuntos
Desfibriladores Implantáveis , Taquicardia Ventricular , Suínos , Animais , Cicatriz/etiologia , Cicatriz/terapia , Estimulação Cardíaca Artificial/métodos , Taquicardia Ventricular/terapia , Ventrículos do Coração , Trifosfato de Adenosina
2.
Comput Biol Med ; 139: 104987, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34741904

RESUMO

The implanted cardioverter defibrillator (ICD) is an effective direct therapy for the treatment of cardiac arrhythmias, including ventricular tachycardia (VT). Anti-tachycardia pacing (ATP) is often applied by the ICD as the first mode of therapy, but is often found to be ineffective, particularly for fast VTs. In such cases, strong, painful and damaging backup defibrillation shocks are applied by the device. Here, we propose two novel electrode configurations: "bipolar" and "transmural" which both combine the concept of targeted shock delivery with the advantage of reduced energy required for VT termination. We perform an in silico study to evaluate the efficacy of VT termination by applying one single (low-energy) monophasic shock from each novel configuration, comparing with conventional ATP therapy. Both bipolar and transmural configurations are able to achieve a higher efficacy (93% and 85%) than ATP (45%), with energy delivered similar to and two orders of magnitudes smaller than conventional ICD defibrillation shocks, respectively. Specifically, the transmural configuration (which applies the shock vector directly across the scar substrate sustaining the VT) is most efficient, requiring typically less than 1 J shock energy to achieve a high efficacy. The efficacy of both bipolar and transmural configurations are higher when applied to slow VTs (100% and 97%) compared to fast VTs (57% and 29%). Both novel electrode configurations introduced are able to improve electrotherapy efficacy while reducing the overall number of required therapies and need for strong backup shocks.


Assuntos
Desfibriladores Implantáveis , Taquicardia Ventricular , Cardioversão Elétrica , Eletrocardiografia , Expiração , Humanos , Taquicardia Ventricular/terapia
3.
IEEE Trans Biomed Eng ; 66(5): 1259-1268, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31021745

RESUMO

OBJECTIVE: Electrotherapy remains the most effective direct therapy against lethal cardiac arrhythmias. When an arrhythmic event is sensed, either strong electric shocks or controlled rapid pacing is automatically applied directly to the heart via an implanted cardioverter defibrillator (ICDs). Despite their success, ICDs remain a highly non-optimal therapy: the strong shocks required for defibrillation cause significant extra-cardiac stimulation, resulting in pain and long-term tissue damage, and can also limit battery life. When used in anti-tachycardia pacing mode, ICDs are also often ineffective, as the pacing electrode can be far away from the centre of the arrhythmia, making it hard for the paced wave to interrupt and terminate it. METHODS: In this paper, we present two conceptual intra-cardiac directional electrode configurations in silico based on novel arrangements of pairs of positive-negative electrodes. Both configurations have the potential to cause preferential excitation on specific regions of the heart. RESULTS: We demonstrate how the properties of the induced field varies spatially around the electrodes and how it depends upon the specific arrangements of dipole electrode pairs. The results show that when tested within anatomically-realistic rabbit ventricular models, both electrode configurations produce strong virtual electrodes on the targeted endocardial surfaces, with weaker virtual electrodes produced elsewhere. CONCLUSIONS: The proposed electrode configurations may facilitate targeted far-field anti-tachycardia pacing and/or defibrillation, which may be useful in cases where conventional anti-tachycardia pacing fails. In addition, the conceptual electrode designs intrinsically confine the electric field to the immediate vicinity of the electrodes, and may, thus, minimize pain due to unnecessary extra-cardiac stimulation.


Assuntos
Estimulação Cardíaca Artificial/métodos , Dispositivos de Terapia de Ressincronização Cardíaca , Desfibriladores Implantáveis , Taquicardia/terapia , Animais , Simulação por Computador , Desenho de Equipamento , Humanos , Modelos Cardiovasculares , Coelhos , Função Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA