RESUMO
Self-incompatibility (SI) is used by many angiosperms to prevent self-fertilization and inbreeding. In common poppy (Papaver rhoeas), interaction of cognate pollen and pistil S-determinants triggers programmed cell death (PCD) of incompatible pollen. We previously identified that reactive oxygen species (ROS) signal to SI-PCD. ROS-induced oxidative posttranslational modifications (oxPTMs) can regulate protein structure and function. Here, we have identified and mapped oxPTMs triggered by SI in incompatible pollen. Notably, SI-induced pollen had numerous irreversible oxidative modifications, while untreated pollen had virtually none. Our data provide a valuable analysis of the protein targets of ROS in the context of SI-induction and comprise a benchmark because currently there are few reports of irreversible oxPTMs in plants. Strikingly, cytoskeletal proteins and enzymes involved in energy metabolism are a prominent target of ROS. Oxidative modifications to a phosphomimic form of a pyrophosphatase result in a reduction of its activity. Therefore, our results demonstrate irreversible oxidation of pollen proteins during SI and provide evidence that this modification can affect protein function. We suggest that this reduction in cellular activity could lead to PCD.
Assuntos
Papaver/fisiologia , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Autoincompatibilidade em Angiospermas/fisiologia , Actinas/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Peróxido de Hidrogênio/toxicidade , Pirofosfatase Inorgânica/metabolismo , Nitrosação , Oxirredução , Papaver/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/química , Pólen/efeitos dos fármacos , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Autoincompatibilidade em Angiospermas/efeitos dos fármacos , SolubilidadeRESUMO
Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca2+ and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.
Assuntos
Pirofosfatase Inorgânica/metabolismo , Papaver/enzimologia , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Cálcio/metabolismo , Cálcio/farmacologia , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Pirofosfatase Inorgânica/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Oxidantes/farmacologia , Papaver/genética , Fosforilação , Filogenia , Proteínas de Plantas/genética , Pólen/genética , Proteínas Quinases/classificação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Solubilidade , Especificidade por Substrato , Espectrometria de Massas em TandemRESUMO
Here we investigate the effect of S-dipalmitoylation on the electron capture dissociation (ECD) behavior of peptides. The ECD and collision induced dissociation (CID) of peptides modified by covalent attachment of [(RS)-2,3-di(palmitoyloxy)-propyl] (PAM2) group to cysteine residues [C(PAM2)LEYDTGFK and RPPGC(PAM2)SPFK] were examined. The results suggest that ECD of S-dipalmitoylated peptides can provide both primary sequence information and structural information regarding the modification. The structural information provided by CID is complementary to that provided by ECD.
Assuntos
Ácidos Palmíticos/química , Peptídeos/química , Sequência de Aminoácidos , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Indicadores e Reagentes , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The attachment of the ubiquitin-like protein SUMO to target proteins is involved in a number of important cellular processes. Typically, SUMO modification occurs on lysine residues within the consensus sequence psiKxE/D (psi is a hydrophobic residue and x is any residue), although there are examples of modifications at nonconsensus sites. In most cases, sites of SUMO modification have been inferred from a combination of site-directed mutagenesis and functional analysis; however, these methods have two limitations. They do not directly identify the acceptor lysine, nor are they sufficient to identify acceptor lysine residues in SUMO polymers. Here, we use Fourier transform ion cyclotron resonance (FT-ICR) together with activated-ion electron capture dissociation (AI-ECD) or infrared multiphoton dissociation (IRMPD) mass spectrometry techniques to overcome these restrictions. These approaches were employed to analyze the autoSUMOylation reaction catalyzed by the SUMO E3 ligase RanBP2. Six sites of in vitro SUMOylation in RanBP2 along with four branch-point lysines in SUMO-1 and three in SUMO-2 were identified. In all but one case, SUMOylation occurred within the sequences KxE or KpsiK. These results demonstrate the utility of FT-ICR with AI-ECD or IRMPD mass spectrometry in detecting SUMOylation, and sites of SUMOylation, and their potential roles as complementary tools for proteomic and functional analysis, and provide significant insight into the modification of a SUMO ligase for which conventional techniques have been unsuccessful.
Assuntos
Análise de Fourier , Lisina/análise , Espectrometria de Massas/métodos , Chaperonas Moleculares/análise , Complexo de Proteínas Formadoras de Poros Nucleares/análise , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/análise , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Ciclotrons , Íons/química , Lisina/química , Metilação , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Peso Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , UbiquitinaRESUMO
In a number of human diseases of chronic inflammatory or autoimmune character, immunoglobulin molecules display aberrant glycosylation patterns of N- or O-linked glycans. In IgA nephropathy, IgA1 molecules with incompletely galactosylated O-linked glycans in the hinge region (HR) are present in mesangial immunodeposits and in circulating immune complexes. It is not known whether the Gal deficiency in IgA1 proteins occurs randomly or preferentially at specific sites. To develop experimental approaches to address this question, the synthetic IgA1 hinge region and hinge region from a naturally Gal-deficient IgA1 myeloma protein have been analyzed by 9.4 tesla Fourier transform-ion cyclotron resonance mass spectrometry. Fourier transform-ion cyclotron resonance mass spectrometry offers two complementary fragmentation techniques for analysis of protein glycosylation by tandem mass spectrometry. Infrared multiphoton dissociation of isolated myeloma IgA1 hinge region peptides confirms the amino acid sequence of the de-glycosylated peptide and positively identifies a series of fragments differing in O-glycosylation. To localize sites of O-glycan attachment, synthetic IgA1 HR glycopeptides and HR from a naturally Gal-deficient polymeric IgA1 myeloma protein were analyzed by electron capture dissociation and activated ion-electron capture dissociation. Multiple sites of O-glycan attachment (including sites of Gal deficiency) in myeloma IgA1 HR glycoforms were identified (in all but one case uniquely). These results represent the first direct identification of multiple sites of O-glycan attachment in IgA1 hinge region by mass spectrometry, thereby enabling future characterization at the molecular level of aberrant glycosylation of IgA1 in diseases such as IgA nephropathy.