RESUMO
BACKGROUND: Anaemia occurs in chronic kidney disease (CKD) and is more prevalent with lower levels of kidney function. Anaemia in CKD is associated with death related to cardiovascular (CV) disease and infection. Established treatments include erythropoiesis-stimulating agents (ESAs), iron supplementation and blood transfusions. Oral hypoxia-inducible factors (HIF) stabilisers are now available to manage anaemia in people with CKD. OBJECTIVES: We aimed to assess the benefits and potential harms of HIF stabilisers for the management of anaemia in people with CKD. SEARCH METHODS: We searched the Cochrane Kidney and Transplant Register of Studies up to 22 November 2021 through contact with the Information Specialist using search terms relevant to our review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA: Randomised and quasi-randomised studies evaluating hypoxia-inducible factors stabilisers compared to placebo, standard care, ESAs or iron supplementation in people with CKD were included. DATA COLLECTION AND ANALYSIS: Five authors independently extracted data and assessed the risk of bias. Treatment estimates were summarised using random effects pair-wise meta-analysis and expressed as a relative risk (RR) or mean difference (MD), with a corresponding 95% confidence interval (CI). Evidence certainty was assessed using GRADE. MAIN RESULTS: We included 51 studies randomising 30,994 adults. These studies compared HIF stabilisers to either placebo or an ESA. Compared to placebo, HIF stabiliser therapy had uncertain effects on CV death (10 studies, 1114 participants): RR 3.68, 95% CI 0.19 to 70.21; very low certainty evidence), and nonfatal myocardial infarction (MI) (3 studies, 822 participants): RR 1.29, 95% CI 0.31 to 5.36; I² = 0%; very low certainty evidence), probably decreases the proportion of patients requiring blood transfusion (8 studies, 4329 participants): RR 0.51, 95% CI 0.44 to 0.60; I² = 0%; moderate certainty evidence), and increases the proportion of patients reaching the target haemoglobin (Hb) (10 studies, 5102 participants): RR 8.36, 95% CI 6.42 to 10.89; I² = 37%; moderate certainty evidence). Compared to ESAs, HIF stabiliser therapy may make little or no difference to CV death (17 studies, 10,340 participants): RR 1.05, 95% CI 0.88 to 1.26; I² = 0%; low certainty evidence), nonfatal MI (7 studies, 7765 participants): RR 0.91, 95% CI 0.76 to 1.10; I² = 0%; low certainty evidence), and nonfatal stroke (5 studies, 7285 participants): RR 1.06, 95% CI 0.71 to 1.56; I² = 8%; low certainty evidence), and had uncertain effects on fatigue (2 studies, 3471 participants): RR 0.80, 95% CI 0.56 to 1.16; I² = 0%; very low certainty evidence). HIF stabiliser therapy probably decreased the proportion of patients requiring blood transfusion (11 studies, 10,786 participants): RR 0.87, 95% CI 0.76 to 1.00; I² = 25%; moderate certainty evidence), but may make little or no difference on the proportion of patients reaching the target Hb (14 studies, 4601 participants): RR 1.00, 95% CI 0.93 to 1.07; I² = 70%; low certainty evidence), compared to ESA. The effect of HIF stabilisers on hospitalisation for heart failure, peripheral arterial events, loss of unassisted dialysis vascular access patency, access intervention, cancer, infection, pulmonary hypertension and diabetic nephropathy was uncertain. None of the included studies reported life participation. Adverse events were rarely and inconsistently reported. AUTHORS' CONCLUSIONS: HIF stabiliser management of anaemia had uncertain effects on CV death, fatigue, death (any cause), CV outcomes, and kidney failure compared to placebo or ESAs. Compared to placebo or ESAs, HIF stabiliser management of anaemia probably decreased the proportion of patients requiring blood transfusions, and probably increased the proportion of patients reaching the target Hb when compared to placebo.
Assuntos
Anemia , Doenças Cardiovasculares , Insuficiência Renal Crônica , Adulto , Anemia/tratamento farmacológico , Anemia/etiologia , Causas de Morte , Fadiga , Humanos , Hipóxia , Ferro/uso terapêutico , Insuficiência Renal Crônica/terapiaRESUMO
BACKGROUND: Ear wax (cerumen) is a normal bodily secretion that can become a problem when it obstructs the ear canal. Symptoms attributed to wax (such as deafness and pain) are among the commonest reasons for patients to present to primary care with ear trouble.Wax is part of the ear's self-cleaning mechanism and is usually naturally expelled from the ear canal without causing problems. When this mechanism fails, wax is retained in the canal and may become impacted; interventions to encourage its removal may then be needed. Application of ear drops is one of these methods. Liquids used to remove and soften wax are of several kinds: oil-based compounds (e.g. olive or almond oil); water-based compounds (e.g. sodium bicarbonate or water itself); a combination of the above or non-water, non-oil-based solutions, such as carbamide peroxide (a hydrogen peroxide-urea compound) and glycerol. OBJECTIVES: To assess the effects of ear drops (or sprays) to remove or aid the removal of ear wax in adults and children. SEARCH METHODS: We searched the Cochrane ENT Trials Register; Cochrane Register of Studies; PubMed; Ovid Embase; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the most recent search was 23 March 2018. SELECTION CRITERIA: Randomised controlled trials (RCTs) in which a 'cerumenolytic' was compared with no treatment, water or saline, an alternative liquid treatment (oil or almond oil) or another 'cerumenolytic' in adults or children with obstructing or impacted ear wax. DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. The primary outcomes were 1) the proportion of patients (or ears) with complete clearance of ear wax and 2) adverse effects (discomfort, irritation or pain). Secondary outcomes were: extent of wax clearance; proportion of people (or ears) with relief of symptoms due to wax; proportion of people (or ears) requiring further intervention to remove wax; success of mechanical removal of residual wax following treatment; any other adverse effects recorded and cost. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics. MAIN RESULTS: We included 10 studies, with 623 participants (900 ears). Interventions included: oil-based treatments (triethanolamine polypeptide, almond oil, benzocaine, chlorobutanol), water-based treatments (docusate sodium, carbamide peroxide, phenazone, choline salicylate, urea peroxide, potassium carbonate), other active comparators (e.g. saline or water alone) and no treatment. Nine of the studies were more than 15 years old.The overall risk of bias across the 10 included studies was low or unclear. PRIMARY OUTCOME: proportion of patients (or ears) with complete clearance of ear waxSix studies (360 participants; 491 ears) contributed quantitative data and were included in our meta-analyses.Active treatment versus no treatmentOnly one study addressed this comparison. The proportion of ears with complete clearance of ear wax was higher in the active treatment group (22%) compared with the no treatment group (5%) after five days of treatment (risk ratio (RR) 4.09, 95% confidence interval (CI) 1.00 to 16.80); one study; 117 ears; NNTB = 8) (low-quality evidence).Active treatment versus water or salineWe found no evidence of a difference in the proportion of patients (or ears) with complete clearance of ear wax when the active treatment group was compared to the water or saline group (RR 1.47, 95% CI 0.79 to 2.75; three studies; 213 participants; 257 ears) (low-quality evidence). Two studies applied drops for five days, but one study only applied the drops for 15 minutes. When we excluded this study in a sensitivity analysis it did not change the result.Water or saline versus no treatmentThis comparison was only addressed in the single study cited above (active versus no treatment) and there was no evidence of a difference in the proportion of ears with complete wax clearance when comparing water or saline with no treatment after five days of treatment (RR 4.00, 95% CI 0.91 to 17.62; one study; 76 ears) (low-quality evidence).Active treatment A versus active treatment BSeveral single studies evaluated 'head-to-head' comparisons between two active treatments. We found no evidence to show that one was superior to any other.Subgroup analysis of oil-based active treatments versus non-oil based active treatmentsWe found no evidence of a difference in this outcome when oil-based treatments were compared with non-oil-based active treatments. PRIMARY OUTCOME: adverse effects: discomfort, irritation or painOnly seven studies planned to measure and did report this outcome. Only two (141 participants;176 ears) provided useable data. There was no evidence of a significant difference in the number of adverse effects between the types of ear drops in these two studies. We summarised the remaining five studies narratively. All events were mild and reported in fewer than 30 participants across the seven studies (low-quality evidence).Secondary outcomesThree studies reported 'other' adverse effects (how many studies planned to report these is unclear). The available information was limited and included occasional reports of dizziness, unpleasant smell, tinnitus and hearing loss. No significant differences between groups were reported. There were no emergencies or serious adverse effects reported in any of the 10 studies.There was very limited or no information available on our remaining secondary outcomes. AUTHORS' CONCLUSIONS: Although a number of studies aimed to evaluate whether or not one type of cerumenolytic is more effective than another, there is no high-quality evidence to allow a firm conclusion to be drawn and the answer remains uncertain.A single study suggests that applying ear drops for five days may result in a greater likelihood of complete wax clearance than no treatment at all. However, we cannot conclude whether one type of active treatment is more effective than another and there was no evidence of a difference in efficacy between oil-based and water-based active treatments.There is no evidence to show that using saline or water alone is better or worse than commercially produced cerumenolytics. Equally, there is also no evidence to show that using saline or water alone is better than no treatment.
Assuntos
Cerume , Meato Acústico Externo , Higiene , Tensoativos/uso terapêutico , Adulto , Antipirina/uso terapêutico , Benzocaína/uso terapêutico , Peróxido de Carbamida , Carbonatos/uso terapêutico , Criança , Clorobutanol/uso terapêutico , Colina/análogos & derivados , Colina/uso terapêutico , Ácido Dioctil Sulfossuccínico/uso terapêutico , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Humanos , Peróxidos/uso terapêutico , Soluções Farmacêuticas/uso terapêutico , Óleos de Plantas/uso terapêutico , Potássio/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Salicilatos/uso terapêutico , Cloreto de Sódio/uso terapêutico , Ureia/análogos & derivados , Ureia/uso terapêutico , ÁguaRESUMO
BACKGROUND: Pain is a common feature of childhood and adolescence around the world, and for many young people, that pain is chronic. The World Health Organization guidelines for pharmacological treatments for children's persisting pain acknowledge that pain in children is a major public health concern of high significance in most parts of the world. While in the past pain was largely dismissed and was frequently left untreated, views on children's pain have changed over time, and relief of pain is now seen as important.We designed a suite of seven reviews on chronic non-cancer pain and cancer pain (looking at antidepressants, antiepileptic drugs, non-steroidal anti-inflammatory drugs, opioids, and paracetamol) in order to review the evidence for children's pain utilising pharmacological interventions.As the leading cause of morbidity in the world today, chronic disease (and its associated pain) is a major health concern. Chronic pain (that is pain lasting three months or longer) can arise in the paediatric population in a variety of pathophysiological classifications (nociceptive, neuropathic, or idiopathic) from genetic conditions, nerve damage pain, chronic musculoskeletal pain, and chronic abdominal pain, as well as for other unknown reasons.Non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat pain, reduce fever, and for their anti-inflammation properties. They are commonly used within paediatric pain management. Non-steroidal anti-inflammatory drugs are currently licensed for use in Western countries, however they are not approved for infants under three months old. The main adverse effects include renal impairment and gastrointestinal issues. Common side effects in children include diarrhoea, headache, nausea, constipation, rash, dizziness, and abdominal pain. OBJECTIVES: To assess the analgesic efficacy and adverse events of NSAIDs used to treat chronic non-cancer pain in children and adolescents aged between birth and 17 years, in any setting. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online, MEDLINE via Ovid, and Embase via Ovid from inception to 6 September 2016. We also searched the reference lists of retrieved studies and reviews, as well as online clinical trial registries. SELECTION CRITERIA: Randomised controlled trials, with or without blinding, of any dose and any route, treating chronic non-cancer pain in children and adolescents, comparing any NSAID with placebo or an active comparator. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for eligibility. We planned to use dichotomous data to calculate risk ratio and number needed to treat for one additional event, using standard methods. We assessed GRADE and created three 'Summary of findings' tables. MAIN RESULTS: We included seven studies with a total of 1074 participants (aged 2 to 18 years) with chronic juvenile polyarthritis or chronic juvenile rheumatoid arthritis. All seven studies compared an NSAID with an active comparator. None of the studies were placebo controlled. No two studies investigated the same type of NSAID compared with another. We were unable to perform a meta-analysis.Risk of bias varied. For randomisation and allocation concealment, one study was low risk and six studies were unclear risk. For blinding of participants and personnel, three studies were low risk and four studies were unclear to high risk. For blinding of outcome assessors, all studies were unclear risk. For attrition, four studies were low risk and three studies were unclear risk. For selective reporting, four studies were low risk, two studies were unclear risk, and one study was high risk. For size, three studies were unclear risk and four studies were high risk. For other potential sources of bias, seven studies were low risk. Primary outcomesThree studies reported participant-reported pain relief of 30% or greater, showing no statistically significant difference in pain scores between meloxicam and naproxen, celecoxib and naproxen, or rofecoxib and naproxen (P > 0.05) (low-quality evidence).One study reported participant-reported pain relief of 50% or greater, showing no statistically significant difference in pain scores between low-dose meloxicam (0.125 mg/kg) and high-dose meloxicam (0.25 mg/kg) when compared to naproxen 10 mg/kg (P > 0.05) (low-quality evidence).One study reported Patient Global Impression of Change, showing 'very much improved' in 85% of ibuprofen and 90% of aspirin participants (low-quality evidence). Secondary outcomesAll seven studies reported adverse events. Participants reporting an adverse event (one or more per person) by drug were: aspirin 85/202; fenoprofen 28/49; ibuprofen 40/45; indomethacin 9/30; ketoprofen 9/30; meloxicam 18/47; naproxen 44/202; and rofecoxib 47/209 (very low-quality evidence).All seven studies reported withdrawals due to adverse events. Participants withdrawn due to an adverse event by drug were: aspirin 16/120; celecoxib 10/159; fenoprofen 0/49; ibuprofen 0/45; indomethacin 0/30; ketoprofen 0/30; meloxicam 10/147; naproxen 17/285; and rofecoxib 3/209 (very low-quality evidence).All seven studies reported serious adverse events. Participants experiencing a serious adverse event by drug were: aspirin 13/120; celecoxib 5/159; fenoprofen 0/79; ketoprofen 0/30; ibuprofen 4/45; indomethacin 0/30; meloxicam 11/147; naproxen 10/285; and rofecoxib 0/209 (very low-quality evidence).There were few or no data for our remaining secondary outcomes: Carer Global Impression of Change; requirement for rescue analgesia; sleep duration and quality; acceptability of treatment; physical functioning as defined by validated scales; and quality of life as defined by validated scales (very low-quality evidence).We rated the overall quality of the evidence (GRADE rating) for our primary and secondary outcomes as very low because there were limited data from studies and no opportunity for a meta-analysis. AUTHORS' CONCLUSIONS: We identified only a small number of studies, with insufficient data for analysis.As we could undertake no meta-analysis, we are unable to comment about efficacy or harm from the use of NSAIDs to treat chronic non-cancer pain in children and adolescents. Similarly, we cannot comment on our remaining secondary outcomes: Carer Global Impression of Change; requirement for rescue analgesia; sleep duration and quality; acceptability of treatment; physical functioning; and quality of life.We know from adult randomised controlled trials that some NSAIDs, such as ibuprofen, naproxen, and aspirin, can be effective in certain chronic pain conditions.