Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
EBioMedicine ; 95: 104762, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586112

RESUMO

BACKGROUND: Dolutegravir (DTG) is a recommended first-line regimen for all people with Human Immunodeficiency Virus (HIV) infection. Initial findings from Botswana, a country with no folate fortification program, showed an elevated prevalence of neural tube defects (NTDs) with peri-conceptional exposure to DTG. Here we explore whether a low folate diet influences the risk of DTG-associated foetal anomalies in a mouse model. METHODS: C57BL/6 mice fed a folate-deficient diet for 2 weeks, were mated and then randomly allocated to control (water), or 1xDTG (2.5 mg/kg), or 5xDTG (12.5 mg/kg) both administered orally with 50 mg/kg tenofovir disoproxil fumarate 33.3 mg/kg emtricitabine. Treatment was administered once daily from gestational day (GD) 0.5 to sacrifice (GD15.5). Foetuses were assessed for gross anomalies. Maternal and foetal folate levels were quantified. FINDINGS: 313 litters (103 control, 106 1xDTG, 104 5xDTG) were assessed. Viability, placental weight, and foetal weight did not differ between groups. NTDs were only observed in the DTG groups (litter rate: 0% control; 1.0% 1xDTG; 1.3% 5xDTG). Tail, abdominal wall, limb, craniofacial, and bleeding defects all occurred at higher rates in the DTG groups versus control. Compared with our previous findings on DTG usage in folate-replete mouse pregnancies, folate deficiency was associated with higher rates of several defects, including NTDs, but in the DTG groups only. We observed a severe left-right asymmetry phenotype that was more frequent in DTG groups than controls. INTERPRETATION: Maternal folate deficiency may increase the risk for DTG-associated foetal defects. Periconceptional folic acid supplementation could be considered for women with HIV taking DTG during pregnancy, particularly in countries lacking folate fortification programs. FUNDING: This project has been funded by Federal funds from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN275201800001I and award #R01HD104553. LS is supported by a Tier 1 Canada Research Chair in Maternal-Child Health and HIV. HM is supported by a Junior Investigator award from the Ontario HIV Treatment Network.


Assuntos
Deficiência de Ácido Fólico , Infecções por HIV , Defeitos do Tubo Neural , Feminino , Gravidez , Humanos , Camundongos , Animais , Incidência , Placenta , Camundongos Endogâmicos C57BL , Ácido Fólico , Deficiência de Ácido Fólico/complicações , Defeitos do Tubo Neural/etiologia , Modelos Animais de Doenças , Infecções por HIV/tratamento farmacológico , Infecções por HIV/complicações , Troca Materno-Fetal , Feto , Ontário
2.
J Nutr ; 152(11): 2333-2342, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774100

RESUMO

BACKGROUND: Myo-inositol (MI) is incorporated into numerous biomolecules, including phosphoinositides and inositol phosphates. Disturbance of inositol availability or metabolism is associated with various disorders, including neurological conditions and cancers, whereas supplemental MI has therapeutic potential in conditions such as depression, polycystic ovary syndrome, and congenital anomalies. Inositol status can be influenced by diet, synthesis, transport, utilization, and catabolism. OBJECTIVES: We aimed to investigate potential genetic regulation of circulating MI status and to evaluate correlation of MI concentration with other metabolites. METHODS: GC-MS was used to determine plasma MI concentration of >2000 healthy, young adults (aged 18-28 y) from the Trinity Student Study. Genotyping data were used to test association of plasma MI with single nucleotide polymorphisms (SNPs) in candidate genes, encoding inositol transporters and synthesizing enzymes, and test for genome-wide association. We evaluated potential correlation of plasma MI with d-chiro-inositol (DCI), glucose, and other metabolites by Spearman rank correlation. RESULTS: Mean plasma MI showed a small but significant difference between males and females (28.5 and 26.9 µM, respectively). Candidate gene analysis revealed several nominally significant associations with plasma MI, most notably for SLC5A11 (solute carrier family 5 member 11), encoding a sodium-coupled inositol transporter, also known as SMIT2 (sodium-dependent myo-inositol transporter 2). However, these did not survive correction for multiple testing. Subsequent testing for genome-wide association with plasma MI did not identify associations of genome-wide significance (P < 5 × 10-8). However, 8 SNPs exceeded the threshold for suggestive significant association with plasma MI concentration (P < 1 × 10-5), 3 of which were located within or close to genes: MTDH (metadherin), LAPTM4B (lysosomal protein transmembrane 4 ß), and ZP2 (zona pellucida 2). We found significant positive correlation of plasma MI concentration with concentration of dci and several other biochemicals including glucose, methionine, betaine, sarcosine, and tryptophan. CONCLUSIONS: Our findings suggest potential for modulation of plasma MI in young adults by variation in SLC5A11, which is worthy of further investigation.


Assuntos
Inositol , Síndrome do Ovário Policístico , Feminino , Humanos , Masculino , Adulto Jovem , Dieta , Estudo de Associação Genômica Ampla , Glucose , Inositol/sangue , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Transporte de Sódio-Glucose/uso terapêutico
3.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638926

RESUMO

Myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects.


Assuntos
Diabetes Gestacional/tratamento farmacológico , Inositol/farmacologia , Síndrome do Ovário Policístico/tratamento farmacológico , Testosterona/metabolismo , Células Tecais/efeitos dos fármacos , Diabetes Gestacional/metabolismo , Feminino , Humanos , Inositol/química , Inositol/metabolismo , Estrutura Molecular , Síndrome do Ovário Policístico/metabolismo , Gravidez , Transdução de Sinais/efeitos dos fármacos , Células Tecais/metabolismo
4.
Adv Nutr ; 12(1): 212-222, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32892218

RESUMO

Supplementation with myo-inositol during the periconceptional period of pregnancy may ameliorate the recurrence risk of having a fetus affected by a neural tube defect (NTD; e.g., spina bifida). This could be of particular importance in providing a means for preventing NTDs that are unresponsive to folic acid. This review highlights the characteristics of inositol and describes the role of myo-inositol in the prevention of NTDs in rodent studies and the evidence for its efficacy in reducing NTD risk in human pregnancy. The possible reduction in NTD risk by maternal myo-inositol implies functional and developmentally important maternal-embryonic inositol interrelationships and also suggests that embryonic uptake of myo-inositol is crucial for embryonic development. The establishment of active myo-inositol cellular uptake mechanisms in the embryonic stages of human pregnancy, when the neural tube is closing, is likely to be an important determinant of normal development. We draw attention to the generation of materno-fetal inositol concentration gradients and relationships, and outline a transport pathway by which myo-inositol may be delivered to the early developing human embryo. These considerations provide novel insights into the mechanisms that may underpin inositol's ability to confer embryonic developmental benefit.


Assuntos
Defeitos do Tubo Neural , Feminino , Ácido Fólico , Humanos , Inositol , Defeitos do Tubo Neural/prevenção & controle , Gravidez , Disrafismo Espinal , Saco Vitelino
5.
J Clin Invest ; 130(3): 1446-1452, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794432

RESUMO

Ventriculomegaly and hydrocephalus are associated with loss of function of glycine decarboxylase (Gldc) in mice and in humans suffering from non-ketotic hyperglycinemia (NKH), a neurometabolic disorder characterized by accumulation of excess glycine. Here, we showed that ventriculomegaly in Gldc-deficient mice is preceded by stenosis of the Sylvian aqueduct and malformation or absence of the subcommissural organ and pineal gland. Gldc functions in the glycine cleavage system, a mitochondrial component of folate metabolism, whose malfunction results in accumulation of glycine and diminished supply of glycine-derived 1-carbon units to the folate cycle. We showed that inadequate 1-carbon supply, as opposed to excess glycine, is the cause of hydrocephalus associated with loss of function of the glycine cleavage system. Maternal supplementation with formate prevented both ventriculomegaly, as assessed at prenatal stages, and postnatal development of hydrocephalus in Gldc-deficient mice. Furthermore, ventriculomegaly was rescued by genetic ablation of 5,10-methylene tetrahydrofolate reductase (Mthfr), which results in retention of 1-carbon groups in the folate cycle at the expense of transfer to the methylation cycle. In conclusion, a defect in folate metabolism can lead to prenatal aqueduct stenosis and resultant hydrocephalus. These defects are preventable by maternal supplementation with formate, which acts as a 1-carbon donor.


Assuntos
Ácido Fólico/metabolismo , Formiatos/metabolismo , Glicina Desidrogenase (Descarboxilante)/deficiência , Hidrocefalia/metabolismo , Animais , Ácido Fólico/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Hidrocefalia/genética , Hidrocefalia/patologia , Hidrocefalia/prevenção & controle , Metilação , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Camundongos , Camundongos Knockout
6.
Dis Model Mech ; 12(11)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31636139

RESUMO

Neural tube defects (NTDs), including spina bifida and anencephaly, are among the most common birth defects worldwide, but their underlying genetic and cellular causes are not well understood. Some NTDs are preventable by supplemental folic acid. However, despite widespread use of folic acid supplements and implementation of food fortification in many countries, the protective mechanism is unclear. Pax3 mutant (splotch; Sp2H ) mice provide a model in which NTDs are preventable by folic acid and exacerbated by maternal folate deficiency. Here, we found that cell proliferation was diminished in the dorsal neuroepithelium of mutant embryos, corresponding to the region of abolished Pax3 function. This was accompanied by premature neuronal differentiation in the prospective midbrain. Contrary to previous reports, we did not find evidence that increased apoptosis could underlie failed neural tube closure in Pax3 mutant embryos, nor that inhibition of apoptosis could prevent NTDs. These findings suggest that Pax3 functions to maintain the neuroepithelium in a proliferative, undifferentiated state, allowing neurulation to proceed. NTDs in Pax3 mutants were not associated with abnormal abundance of specific folates and were not prevented by formate, a one-carbon donor to folate metabolism. Supplemental folic acid restored proliferation in the cranial neuroepithelium. This effect was mediated by enhanced progression of the cell cycle from S to G2 phase, specifically in the Pax3 mutant dorsal neuroepithelium. We propose that the cell-cycle-promoting effect of folic acid compensates for the loss of Pax3 and thereby prevents cranial NTDs.


Assuntos
Ácido Fólico/administração & dosagem , Mutação , Defeitos do Tubo Neural/etiologia , Fator de Transcrição PAX3/genética , Animais , Apoptose , Ciclo Celular/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos CBA , Defeitos do Tubo Neural/prevenção & controle , Fator de Transcrição PAX3/fisiologia
7.
Birth Defects Res ; 109(2): 68-80, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27324558

RESUMO

Susceptibility to neural tube defects (NTDs), such as anencephaly and spina bifida is influenced by genetic and environmental factors including maternal nutrition. Maternal periconceptional supplementation with folic acid significantly reduces the risk of an NTD-affected pregnancy, but does not prevent all NTDs, and "folic acid non-responsive" NTDs continue to occur. Similarly, among mouse models of NTDs, some are responsive to folic acid but others are not. Among nutritional factors, inositol deficiency causes cranial NTDs in mice while supplemental inositol prevents spinal and cranial NTDs in the curly tail (Grhl3 hypomorph) mouse, rodent models of hyperglycemia or induced diabetes, and in a folate-deficiency induced NTD model. NTDs also occur in mice lacking expression of certain inositol kinases. Inositol-containing phospholipids (phosphoinositides) and soluble inositol phosphates mediate a range of functions, including intracellular signaling, interaction with cytoskeletal proteins, and regulation of membrane identity in trafficking and cell division. Myo-inositol has been trialed in humans for a range of conditions and appears safe for use in human pregnancy. In pilot studies in Italy and the United Kingdom, women took inositol together with folic acid preconceptionally, after one or more previous NTD-affected pregnancies. In nonrandomized cohorts and a randomized double-blind study in the United Kingdom, no recurrent NTDs were observed among 52 pregnancies reported to date. Larger-scale fully powered trials are needed to determine whether supplementation with inositol and folic acid would more effectively prevent NTDs than folic acid alone. Birth Defects Research 109:68-80, 2017. © 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.


Assuntos
Suplementos Nutricionais , Deficiência de Ácido Fólico/prevenção & controle , Ácido Fólico/administração & dosagem , Inositol/administração & dosagem , Defeitos do Tubo Neural/prevenção & controle , Tubo Neural/efeitos dos fármacos , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Feminino , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/patologia , Humanos , Fosfatos de Inositol/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Tubo Neural/anormalidades , Tubo Neural/metabolismo , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Fosfatidilinositóis/metabolismo , Gravidez
8.
Biochimie ; 126: 63-70, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26924399

RESUMO

The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs.


Assuntos
Ácido Fólico/metabolismo , Formiatos/farmacologia , Nucleotídeos/biossíntese , Disrafismo Espinal , Animais , Modelos Animais de Doenças , Camundongos , Disrafismo Espinal/metabolismo , Disrafismo Espinal/prevenção & controle
9.
Br J Nutr ; 115(6): 974-83, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26847388

RESUMO

Although peri-conceptional folic acid (FA) supplementation can prevent a proportion of neural tube defects (NTD), there is increasing evidence that many NTD are FA non-responsive. The vitamin-like molecule inositol may offer a novel approach to preventing FA-non-responsive NTD. Inositol prevented NTD in a genetic mouse model, and was well tolerated by women in a small study of NTD recurrence. In the present study, we report the Prevention of Neural Tube Defects by Inositol (PONTI) pilot study designed to gain further experience of inositol usage in human pregnancy as a preliminary trial to a future large-scale controlled trial to evaluate efficacy of inositol in NTD prevention. Study subjects were UK women with a previous NTD pregnancy who planned to become pregnant again. Of 117 women who made contact, ninety-nine proved eligible and forty-seven agreed to be randomised (double-blind) to peri-conceptional supplementation with inositol plus FA or placebo plus FA. In total, thirty-three randomised pregnancies produced one NTD recurrence in the placebo plus FA group (n 19) and no recurrences in the inositol plus FA group (n 14). Of fifty-two women who declined randomisation, the peri-conceptional supplementation regimen and outcomes of twenty-two further pregnancies were documented. Two NTD recurred, both in women who took only FA in their next pregnancy. No adverse pregnancy events were associated with inositol supplementation. The findings of the PONTI pilot study encourage a large-scale controlled trial of inositol for NTD prevention, but indicate the need for a careful study design in view of the unwillingness of many high-risk women to be randomised.


Assuntos
Suplementos Nutricionais , Ácido Fólico/uso terapêutico , Inositol/uso terapêutico , Fenômenos Fisiológicos da Nutrição Materna , Defeitos do Tubo Neural/prevenção & controle , Cuidado Pré-Concepcional , Adulto , Estudos de Coortes , Suplementos Nutricionais/efeitos adversos , Método Duplo-Cego , Estudos de Viabilidade , Feminino , Ácido Fólico/efeitos adversos , Seguimentos , Humanos , Inositol/efeitos adversos , Inositol/sangue , Inositol/urina , Defeitos do Tubo Neural/sangue , Defeitos do Tubo Neural/epidemiologia , Defeitos do Tubo Neural/urina , Cooperação do Paciente , Projetos Piloto , Gravidez , Recidiva , Risco , Reino Unido/epidemiologia , Adulto Jovem
10.
Nat Rev Dis Primers ; 1: 15007, 2015 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-27189655

RESUMO

Spina bifida is a birth defect in which the vertebral column is open, often with spinal cord involvement. The most clinically significant subtype is myelomeningocele (open spina bifida), which is a condition characterized by failure of the lumbosacral spinal neural tube to close during embryonic development. The exposed neural tissue degenerates in utero, resulting in neurological deficit that varies with the level of the lesion. Occurring in approximately 1 per 1,000 births worldwide, myelomeningocele is one of the most common congenital malformations, but its cause is largely unknown. The genetic component is estimated at 60-70%, but few causative genes have been identified to date, despite much information from mouse models. Non-genetic maternal risk factors include reduced folate intake, anticonvulsant therapy, diabetes mellitus and obesity. Primary prevention by periconceptional supplementation with folic acid has been demonstrated in clinical trials, leading to food fortification programmes in many countries. Prenatal diagnosis is achieved by ultrasonography, enabling women to seek termination of pregnancy. Individuals who survive to birth have their lesions closed surgically, with subsequent management of associated defects, including the Chiari II brain malformation, hydrocephalus, and urological and orthopaedic sequelae. Fetal surgical repair of myelomeningocele has been associated with improved early neurological outcome compared with postnatal operation. Myelomeningocele affects quality of life during childhood, adolescence and adulthood, posing a challenge for individuals, families and society as a whole. For an illustrated summary of this Primer, visit: http://go.nature.com/fK9XNa.


Assuntos
Meningomielocele , Disrafismo Espinal , Feminino , Ácido Fólico/uso terapêutico , Humanos , Meningomielocele/diagnóstico , Meningomielocele/prevenção & controle , Meningomielocele/terapia , Gravidez , Cuidado Pré-Natal/métodos , Diagnóstico Pré-Natal/métodos , Disrafismo Espinal/diagnóstico , Disrafismo Espinal/prevenção & controle , Disrafismo Espinal/terapia
11.
Annu Rev Neurosci ; 37: 221-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25032496

RESUMO

Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies.


Assuntos
Defeitos do Tubo Neural , Neurulação/fisiologia , Animais , Ácido Fólico/uso terapêutico , Predisposição Genética para Doença/genética , Humanos , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/tratamento farmacológico , Defeitos do Tubo Neural/etiologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/fisiopatologia , Defeitos do Tubo Neural/prevenção & controle , Fatores de Risco
12.
Wiley Interdiscip Rev Dev Biol ; 2(2): 213-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009034

RESUMO

Neural tube defects (NTDs) are severe congenital malformations affecting 1 in every 1000 pregnancies. 'Open' NTDs result from failure of primary neurulation as seen in anencephaly, myelomeningocele (open spina bifida), and craniorachischisis. Degeneration of the persistently open neural tube in utero leads to loss of neurological function below the lesion level. 'Closed' NTDs are skin-covered disorders of spinal cord structure, ranging from asymptomatic spina bifida occulta to severe spinal cord tethering, and usually traceable to disruption of secondary neurulation. 'Herniation' NTDs are those in which meninges, with or without brain or spinal cord tissue, become exteriorized through a pathological opening in the skull or vertebral column (e.g., encephalocele and meningocele). NTDs have multifactorial etiology, with genes and environmental factors interacting to determine individual risk of malformation. While over 200 mutant genes cause open NTDs in mice, much less is known about the genetic causation of human NTDs. Recent evidence has implicated genes of the planar cell polarity signaling pathway in a proportion of cases. The embryonic development of NTDs is complex, with diverse cellular and molecular mechanisms operating at different levels of the body axis. Molecular regulatory events include the bone morphogenetic protein and Sonic hedgehog pathways which have been implicated in control of neural plate bending. Primary prevention of NTDs has been implemented clinically following the demonstration that folic acid (FA), when taken as a periconceptional supplement, can prevent many cases. Not all NTDs respond to FA, however, and adjunct therapies are required for prevention of this FA-resistant category.


Assuntos
Anencefalia/patologia , Meningomielocele/patologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Neurulação/genética , Anencefalia/genética , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Desenvolvimento Embrionário , Ácido Fólico/administração & dosagem , Ácido Fólico/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meningomielocele/genética , Camundongos
13.
Brain ; 136(Pt 9): 2836-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23935126

RESUMO

Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone.


Assuntos
Ácido Fólico/efeitos adversos , Defeitos do Tubo Neural/prevenção & controle , Nucleosídeos de Purina/uso terapêutico , Nucleosídeos de Pirimidina/uso terapêutico , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/fisiologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Ácido Fólico/metabolismo , Histonas/metabolismo , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Masculino , Exposição Materna , Camundongos , Camundongos Mutantes , Defeitos do Tubo Neural/tratamento farmacológico , Defeitos do Tubo Neural/genética , Gravidez , Estatísticas não Paramétricas , Timidina/uso terapêutico
14.
Birth Defects Res A Clin Mol Teratol ; 97(7): 444-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23873812

RESUMO

BACKGROUND: It is widely accepted that periconceptional supplementation with folic acid can prevent a significant proportion of neural tube defects (NTDs). The present study evaluated how folic acid knowledge and periconceptional use for NTD prevention varies by ethnicity in the United Kingdom (U.K.). METHODS: A literature search was conducted to identify studies that included assessment of folic acid knowledge or use in U.K. women of different ethnicities. Only research and referenced sources published after 1991, the year of the landmark Medical Research Council's Vitamin Study, were included. A meta-analysis was performed of studies that assessed preconceptional folic acid use in Caucasians and non-Caucasians. RESULTS: Five studies met the inclusion criteria for assessment of knowledge and/or use of folic acid supplements in U.K. women including non-Caucasians. The available evidence indicates that South Asians specifically have less knowledge and lower periconceptional use of folic acid than Caucasians; one study found that West Indian and African women also had lower folic acid uptake. A synthesis of results from three of the studies, in a meta-analysis, shows that Caucasians are almost three times more likely to take folic acid before conception than non-Caucasians. CONCLUSION: From the limited evidence available, U.K. women of non-Caucasian ethnicity appear to have less knowledge and a lower uptake of folic acid supplementation than Caucasians during the periconceptional period. Implementing targeted, innovative education campaigns together with a mandatory fortification policy, including the fortification of ethnic minority foods, will be required for maximum prevention of folic acid-preventable NTDs across different ethnic groups.


Assuntos
Povo Asiático , Ácido Fólico/uso terapêutico , Defeitos do Tubo Neural , Conhecimento do Paciente sobre a Medicação , Complexo Vitamínico B/uso terapêutico , População Branca , População Negra , Feminino , Humanos , Recém-Nascido , Masculino , Defeitos do Tubo Neural/epidemiologia , Defeitos do Tubo Neural/etnologia , Defeitos do Tubo Neural/prevenção & controle , Reino Unido/epidemiologia
15.
Hum Mol Genet ; 21(7): 1496-503, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22171071

RESUMO

Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects of the central nervous system. The complex multigenic causation of human NTDs, together with the large number of possible candidate genes, has hampered efforts to delineate their molecular basis. Function of folate one-carbon metabolism (FOCM) has been implicated as a key determinant of susceptibility to NTDs. The glycine cleavage system (GCS) is a multi-enzyme component of mitochondrial folate metabolism, and GCS-encoding genes therefore represent candidates for involvement in NTDs. To investigate this possibility, we sequenced the coding regions of the GCS genes: AMT, GCSH and GLDC in NTD patients and controls. Two unique non-synonymous changes were identified in the AMT gene that were absent from controls. We also identified a splice acceptor site mutation and five different non-synonymous variants in GLDC, which were found to significantly impair enzymatic activity and represent putative causative mutations. In order to functionally test the requirement for GCS activity in neural tube closure, we generated mice that lack GCS activity, through mutation of AMT. Homozygous Amt(-/-) mice developed NTDs at high frequency. Although these NTDs were not preventable by supplemental folic acid, there was a partial rescue by methionine. Overall, our findings suggest that loss-of-function mutations in GCS genes predispose to NTDs in mice and humans. These data highlight the importance of adequate function of mitochondrial folate metabolism in neural tube closure.


Assuntos
Aminometiltransferase/genética , Proteína H do Complexo Glicina Descarboxilase/genética , Glicina Desidrogenase (Descarboxilante)/genética , Mutação , Defeitos do Tubo Neural/genética , Animais , Complexo Glicina Descarboxilase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto
16.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(26): 2759-63, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21856255

RESUMO

Myo-inositol plays key physiological functions, necessitating development of methodology for quantification in biological matrices. Limitations of current mass spectrometry-based approaches include the need for a derivatisation step and/or sample clean-up. In addition, co-elution of glucose may cause ion suppression of myo-inositol signals, for example in blood or urine samples. We describe an HPLC-MS/MS method using a lead-form resin based column online to a triple quadrupole tandem mass spectrometer, which requires minimum sample preparation and no derivatisation. This method allows separation and selective detection of myo-inositol from other inositol stereoisomers. Importantly, inositol was also separated from hexose monosaccharides of the same molecular weight, including glucose, galactose, mannose and fructose. The inter- and intra-assay variability was determined for standard solutions and urine with inter-assay coefficient of variation (CV) of 1.1% and 3.5% respectively, while intra-assay CV was 2.3% and 3.6%. Urine and blood samples from normal individuals were analysed.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Suplementos Nutricionais/análise , Inositol/análise , Espectrometria de Massas em Tandem/métodos , Adulto , Glucose/metabolismo , Humanos , Inositol/sangue , Inositol/urina , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estereoisomerismo
17.
Birth Defects Res A Clin Mol Teratol ; 88(8): 612-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20589880

RESUMO

BACKGROUND: Folate one-carbon metabolism has been implicated as a determinant of susceptibility to neural tube defects (NTDs), owing to the preventive effect of maternal folic acid supplementation and the higher risk associated with markers of diminished folate status. METHODS: Folate one-carbon metabolism was compared in curly tail (ct/ct) and genetically matched congenic (+(ct)/+(ct)) mouse strains using the deoxyuridine suppression test in embryonic fibroblast cells and by quantifying s-adenosylmethionine (SAM) and s-adenosylhomocysteine (SAH) in embryos using liquid chromatography tandem mass spectrometry. A possible genetic interaction between curly tail and a null allele of 5,10-methylenetetrahydrofolate reductase (MTHFR) was investigated by generation of compound mutant embryos. RESULTS: There was no deficit in thymidylate biosynthesis in ct/ct cells, but incorporation of exogenous thymidine was lower than in +(ct)/+(ct) cells. In +(ct)/+(ct) embryos the SAM/SAH ratio was diminished by dietary folate deficiency and normalized by folic acid or myo-inositol treatment, in association with prevention of NTDs. In contrast, folate deficiency caused a significant increase in the SAM/SAH ratio in ct/ct embryos. Loss of MTHFR function in curly tail embryos significantly reduced the SAM/SAH ratio but did not cause cranial NTDs or alter the frequency of caudal NTDs. CONCLUSIONS: Curly tail fibroblasts and embryos, in which Grhl3 expression is reduced, display alterations in one-carbon metabolism, particularly in the response to folate deficiency, compared to genetically matched congenic controls in which Grhl3 is unaffected. However, unlike folate deficiency, diminished methylation potential appears to be insufficient to cause cranial NTDs in the curly tail strain, nor does it increase the frequency of caudal NTDs.


Assuntos
Carbono/metabolismo , Deficiência de Ácido Fólico/complicações , Ácido Fólico/metabolismo , Defeitos do Tubo Neural/etiologia , Animais , Proteínas de Ligação a DNA/genética , Feminino , Fibroblastos/metabolismo , Deficiência de Ácido Fólico/genética , Metilação , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Camundongos , Camundongos Mutantes , Defeitos do Tubo Neural/metabolismo , Gravidez , S-Adenosil-Homocisteína/análise , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/análise , S-Adenosilmetionina/metabolismo , Timidina Monofosfato/biossíntese , Fatores de Transcrição/genética
18.
J Pathol ; 220(2): 217-30, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19918803

RESUMO

Congenital defects of neural tube closure (neural tube defects; NTDs) are among the commonest and most severe disorders of the fetus and newborn. Disturbance of any of the sequential events of embryonic neurulation produce NTDs, with the phenotype (eg anencephaly, spina bifida) varying depending on the region of neural tube that remains open. While mutation of > 200 genes is known to cause NTDs in mice, the pattern of occurrence in humans suggests a multifactorial polygenic or oligogenic aetiology. This emphasizes the importance of gene-gene and gene-environment interactions in the origins of these defects. A number of cell biological functions are essential for neural tube closure, with defects of the cytoskeleton, cell cycle and molecular regulation of cell viability prominent among the mouse NTD mutants. Many transcriptional regulators and proteins that affect chromatin structure are also required for neural tube closure, although the downstream molecular pathways regulated by these proteins is unknown. Some key signalling pathways for NTDs have been identified: over-activation of sonic hedgehog signalling and loss of function in the planar cell polarity (non-canonical Wnt) pathway are potent causes of NTD, with requirements also for retinoid and inositol signalling. Folic acid supplementation is an effective method for primary prevention of a proportion of NTDs in both humans and mice, although the embryonic mechanism of folate action remains unclear. Folic acid-resistant cases can be prevented by inositol supplementation in mice, raising the possibility that this could lead to an additional preventive strategy for human NTDs in future.


Assuntos
Defeitos do Tubo Neural/genética , Animais , Causalidade , Modelos Animais de Doenças , Ácido Fólico/uso terapêutico , Humanos , Camundongos , Tubo Neural/embriologia , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/prevenção & controle , Neurulação/genética , Transdução de Sinais/genética
19.
Birth Defects Res A Clin Mol Teratol ; 88(2): 76-83, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19824061

RESUMO

BACKGROUND: Suboptimal maternal folate status is considered a risk factor for neural tube defects (NTDs). However, the relationship between dietary folate status and risk of NTDs appears complex, as experimentally induced folate deficiency is insufficient to cause NTDs in nonmutant mice. In contrast, folate deficiency can exacerbate the effect of an NTD-causing mutation, as in splotch mice. The purpose of the present study was to determine whether folate deficiency can induce NTDs in mice with a permissive genetic background which do not normally exhibit defects. METHODS: Folate deficiency was induced in curly tail and genetically matched wild-type mice, and we analyzed the effect on maternal folate status, embryonic growth and development, and frequency of NTDs. RESULTS: Folate-deficient diets resulted in reduced maternal blood folate, elevated homocysteine, and a diminished embryonic folate content. Folate deficiency had a deleterious effect on reproductive success, resulting in smaller litter sizes and an increased rate of resorption. Notably, folate deficiency caused a similar-sized, statistically significant increase in the frequency of cranial NTDs among both curly tail (Grhl3 mutant) embryos and background-matched embryos that are wild type for Grhl3. The latter do not exhibit NTDs under normal dietary conditions. Maternal supplementation with myo-inositol reduced the incidence of NTDs in the folate-deficient wild-type strain. CONCLUSIONS: Dietary folate deficiency can induce cranial NTDs in nonmutant mice with a permissive genetic background, a situation that likely parallels gene-nutrient interactions in human NTDs. Our findings suggest that inositol supplementation may ameliorate NTDs resulting from insufficient dietary folate.


Assuntos
Proteínas de Ligação a DNA/genética , Deficiência de Ácido Fólico/complicações , Predisposição Genética para Doença , Defeitos do Tubo Neural/genética , Fatores de Transcrição/genética , Animais , Dieta , Feminino , Ácido Fólico/administração & dosagem , Ácido Fólico/sangue , Deficiência de Ácido Fólico/sangue , Deficiência de Ácido Fólico/induzido quimicamente , Inositol/administração & dosagem , Camundongos , Camundongos Transgênicos , Defeitos do Tubo Neural/etiologia , Defeitos do Tubo Neural/prevenção & controle , Fatores de Risco
20.
Brain ; 130(Pt 4): 1043-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17438019

RESUMO

Folic acid supplementation can prevent many cases of neural tube defects (NTDs), whereas suboptimal maternal folate status is a risk factor, suggesting that folate metabolism is a key determinant of susceptibility to NTDs. Despite extensive genetic analysis of folate cycle enzymes, and quantification of metabolites in maternal blood, neither the protective mechanism nor the relationship between maternal folate status and susceptibility are understood in most cases. In order to investigate potential abnormalities in folate metabolism in the embryo itself, we derived primary fibroblastic cell lines from foetuses affected by NTDs and subjected them to the dU suppression test, a sensitive metabolic test of folate metabolism. Significantly, a subset of NTD cases exhibited low scores in this test, indicative of abnormalities in folate cycling that may be causally linked to the defect. Susceptibility to NTDs may be increased by suppression of the methylation cycle, which is interlinked with the folate cycle. However, reduced efficacy in the dU suppression test was not associated with altered abundance of the methylation cycle intermediates, s-adenosylmethionine and s-adenosylhomocysteine, suggesting that a methylation cycle defect is unlikely to be responsible for the observed abnormality of folate metabolism. Genotyping of samples for known polymorphisms in genes encoding folate-associated enzymes did not reveal any correlation between specific genotypes and the observed abnormalities in folate metabolism. These data suggest that as yet unrecognized genetic variants result in embryonic abnormalities of folate cycling that may be causally related to NTDs.


Assuntos
Doenças Fetais/metabolismo , Feto/metabolismo , Ácido Fólico/metabolismo , Defeitos do Tubo Neural/metabolismo , Anencefalia/embriologia , Anencefalia/metabolismo , Animais , Antimetabólitos/farmacologia , Desoxiuridina/farmacologia , Feminino , Ferredoxina-NADP Redutase/genética , Feto/efeitos dos fármacos , Fibroblastos/metabolismo , Ácido Fólico/genética , Genótipo , Humanos , Metilação , Camundongos , Células NIH 3T3 , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Polimorfismo Genético/genética , Gravidez , S-Adenosil-Homocisteína/análise , S-Adenosilmetionina/análise , Disrafismo Espinal/embriologia , Disrafismo Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA