Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Radioact ; 241: 106776, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34823202

RESUMO

Due to mining activities, concentration of uranium (U) in the environment nearby former and operating sites can be higher than in other areas. The derivation of quality criteria for U in freshwater ecosystems, rivers and lakes includes the consideration of contaminated sediments and the associated risk to the benthic life. Therefore, the derivation of a quality criteria for sediment has been viewed as a logical and necessary extension of the work already done to establish water quality criteria. In order to contribute to the determination of a Quality Standard for sediment (QSsediment) according to the European recommendations, this study focuses on the acquisition of a new toxicity dataset, to enrich the few rare existing data, most often unsuitable. A basic set of organisms, including three complementary benthic organisms (Chironomus riparius, Hyalella azteca, Myriophyllum aquaticum), was chronically exposed to U spiked to a standard laboratory-formulated sediment, according to the related bioassay guidelines (ISO/FDIS16303, OECD 218/9, ISO/DIS 16191). We looked to determine when possible both NOEC and EC10 values for each organism. For C. riparius, a NOEC (emergence rate) value was estimated at 62 mgU, kg-1, dm and the EC10 value reached 188 mgU, kg-1, dm (CI95% 40-885 mgU kg-1, dm). For H. azteca, a NOEC (survival rate) value of 40 mgU kg-1, dm was observed while the EC10 value at 296 mgU kg-1, dm (CI95% = 155-436 mgU kg-1, dm) was slightly higher than for growth at 199 mgU kg-1, dm (CI95% = 107-291 mgU kg-1 dm). Finally, the less sensitive organism seemed to be the plant, M. aquaticum, for which we determined a NOEC value of 100 mgU kg-1, dm. Results obtained regarding the toxicity of U made it possible to suggest a preliminary QSsediment value of 4 mgU kg-1, dry mass. This value was shown conservative compared to U sediment quality criteria derived by other jurisdictions.


Assuntos
Monitoramento de Radiação , Urânio , Poluentes Químicos da Água , Animais , Ecossistema , Sedimentos Geológicos , Laboratórios , Urânio/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
J Environ Radioact ; 235-236: 106645, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34020181

RESUMO

Actinide-based mineral phases occurring in contaminated soils can be solubilized by organic chelators excreted by plants, such as citrate. Herein, the efficiency of citrate towards U and Pu extraction is compared to that of siderophores, whose primary function is the acquisition of iron(III) as an essential nutrient and growth factor for many soil microorganisms. To that end, we selected desferrioxamine B (DFB) as an emblematic bacterial trishydroxamic siderophore and a synthetic analog, abbreviated (LCy,Pr)H2, of the tetradentate rhodotorulic acid (RA) produced by yeasts. Firstly, the uranyl speciation with both ligands was assessed in the pH range 2-11 by potentiometry and visible absorption spectrophotometry. Equilibrium constants and absorption spectra for three [UO2(DFB)Hh](h-1)+ (h = 1-3) and five [UO2(LCy,Pr)lHh](2+h-2l)+ (-1 ≤ h ≤ 1 for l = 1 and h = 0-1 for l = 2) solution complexes were determined at 25.0 °C and I = 0.1 M KNO3. Similar studies for the Fe3+/(LCy,Pr)2- system revealed the formation of five species having [Fe(LCy,Pr)]+, [Fe(LCy,Pr)OH], [Fe(LCy,Pr)(OH)2]-, [Fe(LCy,Pr)2H], and [Fe2(LCy,Pr)3] compositions. Then, the ability of DFB, (LCy,Pr)H2, and citrate to solubilize either U or Pu from pitchblende-rich soils (soils 1 and 2) or freshly plutonium-contaminated soils (LBS and PG) was evaluated by performing batch extraction tests. U was extracted significantly only by citrate after a day. After one week, the amount of U complexed by citrate only slightly exceeded that measured for the siderochelates, following the order citrate > (LCy,Pr)H2 ≥ DFB ≈ H2O, and were comparatively very low. Pu was also more efficiently extracted by citrate than by DFB after a day, but only by a factor of ~2-3 for the PG soil, while the Pu concentration in the supernatant after one week was approximately the same for both natural chelators. It remained nearly constant for DFB between the 1st and 7th day, but drastically decreased in the case of citrate, suggesting chemical decomposition in the latter case. For the Fe-rich soils 1 and 2, the efficiencies of the three chelators to solubilize Fe after a day were of the same order of magnitude, decreasing in the order DFB > citrate > (LCy,Pr)H2. However, after a week DFB had extracted ~1.5 times more Fe, whereas the amount extracted by the other chelators stayed constant. For the less Fe-rich LBS and PG soils contaminated by Pu, the amounts of extracted Fe were higher, especially after 7 days, and the DFB outperformed citrate by a factor of nearly 3. The higher capacity of the hexadentate DFB to extract Pu in the presence of Fe and its lower ability to mobilize U qualitatively agree with the respective complexation constant ratios, keeping in mind that both Pu-containing soils had a lower iron loading. Noticeably, (LCy,Pr)H2 has roughly the same capacity as DFB to solubilize U, but it mobilizes less Fe than the hexadentate siderophore. Similarly, citrate has the highest capacity to extract Pu, but the lowest to extract Fe. Therefore, compared to DFB, (LCy,Pr)H2 shows a better U/Fe extraction selectivity and citrate shows a better Pu/Fe selectivity.


Assuntos
Plutônio , Monitoramento de Radiação , Urânio , Compostos Férricos , Solo
3.
Chemosphere ; 273: 128971, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33243570

RESUMO

The spatial distribution and seasonal variations of atmospheric iodine (I), selenium (Se) and caesium (Cs) depositions remain unclear and this precludes adequate inputs for biogeochemical models. We quantified total concentrations and fluxes of these elements in rainfalls from 27 monitoring sites in France with contrasted climatic conditions; monthly measurements were taken over one year (starting in 2016/09). Since speciation of I and Se can impact their behaviour in the environment, analysis of their inorganic compounds was also conducted. Our results showed that annual I concentrations in rainfall were much higher than those of Se and Cs (annual means = 1.56, 0.044 and 0.005 µg L-1, respectively). The annual iodine concentrations were highly positively correlated with those of marine elements (i.e. Na, Cl and Mg), involving higher I concentrations under oceanic climate than for transition, continental and mountainous ones. Furthermore, common patterns were found between Se concentrations and both marine and terrestrial components consistent with the various sources of Se in atmosphere. The association of Cs with two anthropogenic components (i.e. NH4+ and NO3-) used in agriculture supports the hypothesis of its terrestrial origin (i.e. from atmospheric dusts) in rainfall. We found higher rainfall concentrations of I during the warmest months for all climates. However, no specific seasonal trend occurred for Se and Cs. On annual average, rainfall contained mostly unidentified selenium compounds (inorganic Se proportions = 25-54%) and equal proportions of inorganic and unidentified I compounds. Concentrations of iodate were higher under oceanic climate consistent with an iodine marine-origin.


Assuntos
Iodo , Selênio , Césio , Monitoramento Ambiental , França , Oceanos e Mares , Estações do Ano
4.
Chemosphere ; 273: 128952, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33228989

RESUMO

Estimation of the canopy influence on atmospheric inputs of iodine (I), selenium (Se) and caesium (Cs) in terrestrial ecosystems is an essential condition for appropriate biogeochemical models. However, the processes involved in rain composition modifications after its passage through forest canopy have been barely studied for these elements. We monitored I, Se and Cs concentrations in both rainfall and throughfall of fourteen French forested sites throughout one year, and estimated dry deposition and canopy exchange fluxes for these elements, as well as speciation of I and Se. Comparison of rainfall and throughfall elemental composition highlighted an important impact of forest canopy on both (i) concentrations and fluxes of I, Se and Cs, and (ii) I and Se species. For the three elements, most of their throughfall concentrations were higher than corresponding rainfall. The increase of throughfall elemental fluxes was mostly due to dry deposition for I and Se although the canopy exchange model revealed some sorption within the canopy in most cases; for Cs, foliage leaching was most influencing. Regarding speciation, iodine species in rainfall were highly modified by forest canopy with an important increase of unidentified I proportion in throughfall (on average 49 and 82% in rainfall and throughfall, respectively), possibly due to washoff of dry deposition and/or to transformation into organic forms. Similarly, while rainfall was composed of 26-54% of inorganic Se, inorganic species were undetectable in throughfall. This dataset represents key information to improve modelling of I, Se and Cs cycling within forest ecosystems.


Assuntos
Iodo , Selênio , Césio , Ecossistema , Monitoramento Ambiental , Florestas , França , Árvores
5.
J Environ Radioact ; 190-191: 39-50, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29751206

RESUMO

Mechanisms of uranium (U) transfer from soil to plants remain poorly understood. The kinetics of supply of U to the soil solution from solid phases could be a key point to understand its phytoavailability and implications for environmental risk assessment. Root activity, particularly the continuous release of organic acids in the rhizosphere, could have an effect on this supply. We tested the impact of citrate exudation by roots of Lupinus albus, either P-sufficient (P+) or P-deficient (P-), on the phytoavailability of U from a naturally contaminated soil (total content of 413 mg U kg-1) using a rhizotest design. Combined effects of P (P-/P+ used to modulate plant physiology) and citrate (model exudate) on the solubilization of U contained in the soils were tested in closed reactors (batch). The batch experiment showed the existence of a low U available pool (0.4% total U) and high accessibility (kd' around 20 L kg-1) which was not significantly affected by P treatment or citrate concentrations. Analysis of U, Fe, Ca, P and citrate concentrations in the batches suggested a complex combination of mechanisms and factors including desorption, resorption, precipitation, co-sorption. On rhizotest, L. albus plants extracted 0.5-0.75% of the total U and between 25 and 40% of the estimated available U present in the rhizotest in 5 days. Uranium accumulation at the whole plant level (20 mg U kg-1d.w., shoot to root ratio around 10-3) seemed to be dependent neither on the plant P nutrition status nor citrate exudation level, possibly in relation with the equivalent accessibility of U whatever the growth conditions. Yet differential translocation to shoots seemed to be positively correlated to citrate exudation.


Assuntos
Lupinus/química , Rizosfera , Urânio/química , Ácido Cítrico , Concentração de Íons de Hidrogênio , Fósforo , Raízes de Plantas/efeitos dos fármacos , Monitoramento de Radiação , Solo/química
6.
J Hazard Mater ; 285: 285-93, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25528226

RESUMO

Although uranium (U) is naturally found in the environment, soil remediation programs will become increasingly important in light of certain human activities. This work aimed to identify U(VI) detoxification mechanisms employed by a bacteria strain isolated from a Chernobyl soil sample, and to distinguish its active from passive mechanisms of interaction. The ability of the Microbacterium sp. A9 strain to remove U(VI) from aqueous solutions at 4 °C and 25 °C was evaluated, as well as its survival capacity upon U(VI) exposure. The subcellular localisation of U was determined by TEM/EDX microscopy, while functional groups involved in the interaction with U were further evaluated by FTIR; finally, the speciation of U was analysed by TRLFS. We have revealed, for the first time, an active mechanism promoting metal efflux from the cells, during the early steps following U(VI) exposure at 25 °C. The Microbacterium sp. A9 strain also stores U intracellularly, as needle-like structures that have been identified as an autunite group mineral. Taken together, our results demonstrate that this strain exhibits a high U(VI) tolerance based on multiple detoxification mechanisms. These findings support the potential role of the genus Microbacterium in the remediation of aqueous environments contaminated with U(VI) under aerobic conditions.


Assuntos
Actinobacteria/efeitos dos fármacos , Poluentes Radioativos do Solo/farmacologia , Urânio/farmacologia , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/metabolismo , Actinobacteria/ultraestrutura , Adsorção , Carga Bacteriana , Acidente Nuclear de Chernobyl , Microscopia Eletrônica de Transmissão , Fosfatos/análise , Fosfatos/metabolismo , Microbiologia do Solo , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Ucrânia , Urânio/análise , Urânio/química
7.
Ecotoxicol Environ Saf ; 80: 266-72, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22503064

RESUMO

The main objectives of this study were to evaluate uranium (U) toxicity in the crayfish Procambarus clarkii at a low dose of exposure and to discriminate between the chemotoxicity and radiotoxicity of U. We conducted two sets of experiments using either 30 µg L(-1) of depleted uranium (DU) or (233)U, which differ from each other only in their specific activity (DU=1.7×10(4)Bqg(-1), (233)U=3.57×10(8)Bqg(-1)). The endpoints were oxidative stress responses and mitochondrial functioning in the gills and hepatopancreas, which were measured in terms of enzyme activities and gene expression levels. U accumulation levels were measured in different organs (gills, hepatopancreas, stomach, intestine, green gland, muscles, and carapace), and internal dose rates in the hepatopancreas were compared after DU and (233)U exposures. Significant U accumulation occurred in the organs of P. clarkii, and mitochondrial damage and antioxidant responses were detected. Despite the huge difference (21,000×) in the specific activities of DU and (233)U, few significant differences in biological responses were detected in P. clarkii exposed to these two pollutants. This finding indicates that the radiotoxicity was low compared to the chemotoxicity under our exposure conditions. Finally, genes expression levels were more sensitive markers of U toxicity than enzyme activities.


Assuntos
Astacoidea/enzimologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Urânio/toxicidade , Poluentes da Água/toxicidade , Animais , Biomarcadores/metabolismo , Monitoramento Ambiental/métodos , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Músculos/metabolismo , Estresse Oxidativo , Urânio/metabolismo , Poluentes da Água/metabolismo
8.
J Fluoresc ; 20(2): 581-90, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20066480

RESUMO

The interactions between uranium and four metalloproteins (Apo-HTf, HSA, MT and Apo-EqSF) were investigated using fluorescence quenching measurements. The combined use of a microplate spectrofluorometer and logarithmic additions of uranium into protein solutions allowed us to define the fluorescence quenching over a wide range of [U]/[Pi] ratios (from 0.05 to 1150) at physiologically relevant conditions of pH. Results showed that fluorescence from the four metalloproteins was quenched by UO(2)(2+). Stoichiometry reactions, fluorescence quenching mechanisms and complexing properties of metalloproteins, i.e. binding constants and binding sites densities, were determined using classic fluorescence quenching methods and curve-fitting software (PROSECE). It was demonstrated that in our test conditions, the metalloprotein complexation by uranium could be simulated by two specific sites (L(1) and L(2)). Results showed that the U(VI)-Apo-HTf complexation constant values (log K(1)=7.7, log K(2)=4.6) were slightly higher than those observed for U(VI)-HSA complex (log K(1)=6.1, log K(2)=4.8), U(VI)-MT complex (log K(1)=6.5, log K(2)=5.6) and U(VI)-Apo-EqsF complex (log K(1)=5.3, log K(2)=3.9). PROSECE fitting studies also showed that the complexing capacities of each protein were different: 550 moles of U(VI) are complexed by Apo-EqSF while only 28, 10 and 5 moles of U(VI) are complexed by Apo-HTf, HSA and MT, respectively.


Assuntos
Albuminas/química , Ferritinas/química , Metalotioneína/química , Transferrina/química , Urânio/química , Fluorescência , Concentração de Íons de Hidrogênio , Processamento de Sinais Assistido por Computador , Software , Espectrometria de Fluorescência/métodos , Compostos de Urânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA