Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; 121(12): 1345-1356, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940241

RESUMO

Perinatal maternal high-fat diet (HFD) increases susceptibility to obesity and fatty liver diseases in adult offspring, which can be attenuated by the potent hypolipidaemic action of fish oil (FO), an n-3 PUFA source, during adult life. Previously, we described that adolescent HFD offspring showed resistance to FO hypolipidaemic effects, although FO promoted hepatic molecular changes suggestive of reduced lipid accumulation. Here, we investigated whether this FO intervention only during the adolescence period could affect offspring metabolism in adulthood. Then, female Wistar rats received isoenergetic, standard (STD: 9 % fat) or high-fat (HFD: 28·6 % fat) diet before mating, and throughout pregnancy and lactation. After weaning, male offspring received the standard diet; and from 25 to 45 d old they received oral administration of soyabean oil or FO. At 150 d old, serum and hepatic metabolic parameters were evaluated. Maternal HFD adult offspring showed increased body weight, visceral adiposity, hyperleptinaemia and decreased hepatic pSTAT3/STAT3 ratio, suggestive of hepatic leptin resistance. FO intake only during the adolescence period reduced visceral adiposity and serum leptin, regardless of maternal diet. Maternal HFD promoted dyslipidaemia and hepatic TAG accumulation, which was correlated with reduced hepatic carnitine palmitoyl transferase-1a content, suggesting lipid oxidation impairment. FO intake did not change serum lipids; however, it restored hepatic TAG content and hepatic markers of lipid oxidation to STD offspring levels. Therefore, we concluded that FO intake exclusively during adolescence programmed STD offspring and reprogrammed HFD offspring male rats to a healthier metabolic phenotype in adult life, reducing visceral adiposity, serum leptin and hepatic TAG content in offspring adulthood.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Dislipidemias/prevenção & controle , Óleos de Peixe/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Dislipidemias/etiologia , Ácidos Graxos Ômega-3/metabolismo , Feminino , Gordura Intra-Abdominal/metabolismo , Leptina/sangue , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
2.
Psychoneuroendocrinology ; 103: 306-315, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30776574

RESUMO

Maternal nutritional imbalances trigger developmental adaptations involving early epigenetic mechanisms associated with adult chronic disease. Maternal high-fat (HF) diet promotes obesity and hypothalamic leptin resistance in male rat offspring at weaning and adulthood. Leptin resistance is associated with over activation of the endocannabinoid system (ECS). The ECS mainly consists of endocannabinoids derived from n-6 fatty acids and cannabinoid receptors (CB1 coded by Cnr1 and CB2 coded by Cnr2). The CB1 activation in hypothalamus stimulates feeding and appetite for fat while CB2 activation seems to play an immunomodulatory role. We demonstrated that maternal HF diet increases hypothalamic CB1 in male offspring while increases CB2 in female offspring at birth, prior to obesity development. However, the molecular mechanisms behind these changes remain unexplored. We hypothesized that maternal HF diet would down-regulate leptin signaling and up-regulate Cnr1 mRNA levels in the hypothalamus of the offspring at birth, associated with sex-specific changes in epigenetic markers and sex steroid signaling. To test our hypothesis, we used progenitor female rats that received control diet (C, 9% fat) or isocaloric high-fat diet (HF, 28% fat) from 8 weeks before mating until delivery. Blood, hypothalamus and carcass from C and HF male and female offspring were collected for biochemical and molecular analyses at birth. Maternal HF diet down-regulated the transcriptional factor STAT3 in the hypothalamus of male and female offspring, but induced hypoleptinemia only in males and decreased phosphorylated STAT3 only in female offspring. Because leptin acts through STAT3 pathway to inhibit central ECS, our results suggest that leptin pathway impairment might contribute to increased levels of Crn1 mRNA in hypothalamus of both sex offspring. Besides, maternal HF diet increased the histone acetylation percentage of Cnr1 promoter in male offspring and increased the androgen receptor binding to the Cnr1 promoter, which can contribute to higher expression of Cnr1 in newborn HF offspring. Maternal HF diet increased plasma n6 to n3 fatty acid ratio in male offspring, which is an important risk factor to metabolic diseases and might indicate an over activation of endocannabinoid signaling. Thus, although maternal HF diet programs a similar phenotype in adult offspring of both sexes (obesity, hyperphagia and higher preference for fat), here we showed that molecular mechanisms involving leptin signaling, ECS, epigenetic markers and sex hormone signaling were modified prior to obesity development and can differ between newborn male and female offspring. These observations may provide molecular insights into sex-specific targets for anti-obesity therapies.


Assuntos
Leptina/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Adiposidade , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Canabinoides/metabolismo , Dieta Hiperlipídica/efeitos adversos , Endocanabinoides/metabolismo , Epigênese Genética/genética , Feminino , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Leptina/sangue , Masculino , Obesidade/metabolismo , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Fatores Sexuais , Transdução de Sinais
3.
Mol Nutr Food Res ; 60(11): 2493-2504, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27342757

RESUMO

SCOPE: Maternal high-fat diet (HFD) promotes obesity and metabolic disturbances in offspring at weaning and adult life. We investigated metabolic consequences of maternal HFD in adolescent rat offspring and the potential benefic effects of fish oil (FO) (n-3 polyunsaturated fatty acid source). METHODS AND RESULTS: Female rats received isocaloric, standard diet (STD: 9% fat) or HFD (28.6%) before mating, and throughout pregnancy and lactation. After weaning, male offspring received standard diet and, from 25th to 45th day, received oral administration of soybean oil (SO) or FO. HFD offspring showed higher body weight and adiposity, which was not attenuated by FO. In STD offspring, FO reduced serum triglyceride and cholesterol, as expected, but not in HFD offspring. Liver of HFD offspring groups showed increased free cholesterol and FO-treated HFD group showed lower expression of Abcg8, suggesting decreased cholesterol biliary excretion. HFD offspring presented higher hepatic expression of lipogenic markers, Srebf1 mRNA and acetyl CoA carboxylase (ACC). Serum n-3 PUFA were decreased in FO-treated HFD compared to FO-treated STD offspring, which may explain the reduced hypolipidemic FO effect. CONCLUSION: Maternal HFD impaired the ability of FO to reduce adiposity and serum lipids in adolescent offspring, suggesting a potential predisposition to future development of metabolic disorders.


Assuntos
Óleos de Peixe/farmacologia , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Adolescente , Animais , Colesterol/sangue , Dieta Hiperlipídica , Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Feminino , Óleos de Peixe/administração & dosagem , Humanos , Lactação/efeitos dos fármacos , Fígado/metabolismo , Obesidade/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Triglicerídeos/sangue , Desmame
4.
J Nutr Biochem ; 21(10): 935-40, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19793640

RESUMO

n-3 polyunsaturated fatty acids (PUFAs) present in fish oil (FO) potently decrease serum lipids, which is also an effect of thyroid hormones. Both PUFAs and thyroid hormones affect hepatic lipid metabolism, and here we hypothesized that a long-term diet rich in n-3 PUFAs would enhance thyroid hormone action in the liver. Female rats received isocaloric and normolipid diets containing either soybean oil (SO) or FO during lactation. Male offspring received the same diet as their dams since weaning until sacrifice when they were 11 weeks old. FO group, as compared to SO group, exhibited lower body weight since 5 weeks of age until sacrifice, with no alterations in food ingestion, lower retroperitoneal white fat mass and elevated inguinal fat mass relative to body weight, with unchanged water and lipid but reduced protein percentage in their carcasses. FO diet resulted in lower serum triglycerides and cholesterol. Serum total triiodothyronine, total thyroxine and thyrotropin were similar between groups. However, liver thyroid hormone receptor (TR) ß1 protein expression was higher in the FO group and correlated negatively with serum lipids. Liver 5'-deiodinase activity, which converts thyroxine into triiodothyronine, was similar between groups. However, the activity of hepatic mitochondrial glycerophosphate dehydrogenase, the enzyme involved in thermogenesis and a well-characterized target stimulated by T3 via TRß1, was higher in the FO group, suggesting enhancement of thyroid hormone action. These findings suggest that the increase in thyroid hormone signaling pathways in the liver may be one of the mechanisms by which n-3 PUFAs exert part of their effects on lipid metabolism.


Assuntos
Gorduras Insaturadas na Dieta/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Óleos de Peixe/farmacologia , Fígado/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Animais , Feminino , Fígado/metabolismo , Masculino , Ratos , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA