Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomolecules ; 11(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065606

RESUMO

The potential to treat neurodegenerative diseases (NDs) of the major bioactive compound of green tea, epigallocatechin-3-gallate (EGCG), is well documented. Numerous findings now suggest that EGCG targets protein misfolding and aggregation, a common cause and pathological mechanism in many NDs. Several studies have shown that EGCG interacts with misfolded proteins such as amyloid beta-peptide (Aß), linked to Alzheimer's disease (AD), and α-synuclein, linked to Parkinson's disease (PD). To date, NDs constitute a serious public health problem, causing a financial burden for health care systems worldwide. Although current treatments provide symptomatic relief, they do not stop or even slow the progression of these devastating disorders. Therefore, there is an urgent need to develop effective drugs for these incurable ailments. It is expected that targeting protein misfolding can serve as a therapeutic strategy for many NDs since protein misfolding is a common cause of neurodegeneration. In this context, EGCG may offer great potential opportunities in drug discovery for NDs. Therefore, this review critically discusses the role of EGCG in NDs drug discovery and provides updated information on the scientific evidence that EGCG can potentially be used to treat many of these fatal brain disorders.


Assuntos
Precursor de Proteína beta-Amiloide/química , Catequina/análogos & derivados , Doenças Neurodegenerativas/metabolismo , Chá/química , alfa-Sinucleína/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Catequina/farmacologia , Catequina/uso terapêutico , Descoberta de Drogas , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , alfa-Sinucleína/efeitos dos fármacos
2.
Int J Biol Macromol ; 173: 34-43, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476618

RESUMO

The prion protein (PrP) misfolding to its infectious form is critical to the development of prion diseases, whereby various ligands are suggested to participate, such as copper and nucleic acids (NA). The PrP globular domain was shown to undergo NA-driven liquid-liquid phase separation (LLPS); this latter may precede pathological aggregation. Since Cu(II) is a physiological ligand of PrP, we argue whether it modulates phase separation altogether with nucleic acids. Using recombinant PrP, we investigate the effects of Cu(II) (at 6 M equivalents) and a previously described PrP-binding GC-rich DNA (equimolarly to protein) on PrP conformation, oligomerization, and phase transitions using a range of biophysical techniques. Raman spectroscopy data reveals the formation of the ternary complex. Microscopy suggests that phase separation is mainly driven by DNA, whereas Cu(II) has no influence. Our results show that DNA can be an adjuvant, leading to the structural conversion of PrP, even in the presence of an endogenous ligand, copper. These results provide new insights into the role of Cu(II) and NA on the phase separation, structural conversion, and aggregation of PrP, which are critical events leading to neurodegeneration.


Assuntos
Cobre/química , Oligonucleotídeos/química , Proteínas da Gravidez/química , Agregados Proteicos , Animais , Cátions Bivalentes , Clonagem Molecular , Cobre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Camundongos , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Mini Rev Med Chem ; 15(2): 84-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25723455

RESUMO

Transmissible spongiform encephalopathies (TSEs) are infectious neurodegenerative disorders for which symptomatic, curative, or prophylactic treatments are not available. TSEs arise as a consequence of the conversion of soluble cellular prion protein (PrP(C)) into the scrapie isoform (PrP(Sc)), which aggregates and accumulates in the central nervous system. Proposed drugs against TSEs range from small organic compounds to antibodies; various therapeutic strategies have been proposed, including blocking the conversion of PrP(C) to PrP(Sc), increasing PrP(Sc) clearance, and/or stabilizing PrP(C). While several compounds have been effective in vitro and in animal models, none have proven effective in clinical studies to date. Such lack of in vivo efficacy is attributable to high compound toxicity and the lack of permeability of the selected compounds across the blood-brain barrier. In this review, we discuss recent advances in the screening and evaluation of organic compounds for anti-prion activity using multiple approaches, including initial screening in prion-infected cell cultures, in silico prediction of pharmacokinetic and physicochemical properties, ex vivo evaluation of cellular toxicity, and in vitro assays using purified recombinant prion proteins. The main challenges for effective discrimination of candidate lead compounds as therapeutic agents for TSEs, and the disadvantages of each screening strategy are discussed. We propose that a combination of in vitro, ex vivo, and in silico approaches would be useful for the rapid identification of novel anti-prion drug candidates with suitable pharmacokinetic and pharmacodynamic properties that would support their use as drugs.


Assuntos
Doenças Priônicas/tratamento farmacológico , Príons/antagonistas & inibidores , Animais , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligação Proteica , Conformação Proteica
5.
ChemSusChem ; 6(5): 872-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23512882

RESUMO

Lecitase Ultra was immobilized on Amberlites XAD2 and XAD4, through physical entrapping under conventional stirring or ultrasound irradiation, and characterized by standard techniques. The resulting immobilized biocatalysts were utilized in the valorization of an acidic food-derived residue from a palm oil refining process to produce monoacylglycerols from isopropylidene glycerol under batch and continuous flow conditions. Results indicated that the immobilized biocatalysts could moderately convert the food waste residue (max. conversion 50-60 %), exhibiting interesting stability under continuous flow conditions.


Assuntos
Enzimas Imobilizadas/química , Lipase/química , Monoglicerídeos/química , Óleos de Plantas , Resíduos , Esterificação , Indústria de Processamento de Alimentos , Óleo de Palmeira , Poliestirenos/química , Polivinil/química
6.
Eur J Med Chem ; 45(11): 5468-73, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20797807

RESUMO

Transmissible spongiform encephalopathies form a group of neurodegenerative diseases that affect humans and other mammals. They occur when the native prion protein is converted into an infectious isoform, the scrapie PrP, which aggregates, leading to neurodegeneration. Although several compounds were evaluated for their ability to inhibit this conversion, there is no effective therapy for such diseases. Previous studies have shown that antimalarial compounds, such as quinolines, possess anti-scrapie activity. Here, we report the synthesis and evaluate the effect of aminoquinoline derivatives on the aggregation of a prion peptide. Our results show that 4-amino-7-chloroquinoline and N-(7-chloro-4-quinolinyl)-1,2-ethanediamine inhibit the aggregation significantly. Therefore, such aminoquinolines might be considered as candidates for the further development of therapeutics to prevent the development of prion diseases.


Assuntos
Aminoquinolinas/síntese química , Aminoquinolinas/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Príons , Avaliação Pré-Clínica de Medicamentos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA