Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Radiology ; 302(2): 448-456, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783594

RESUMO

Background Active endothelial cell proliferation occurs at the tumor edge, known as the invading-tumor front. This study focused on perfusion analysis of non-small cell lung cancers. Purpose To analyze dual-phase, dual-energy CT perfusion according to the degree of tumor hypoxia. Materials and Methods This prospective study was performed 2016-2017. A two-phase dual-energy CT protocol was obtained for consecutive participants with operable non-small cell lung cancer. The first pass and delayed iodine concentration within the tumor and normalized iodine uptake, corresponding to the iodine concentration within the tumor normalized to iodine concentration within the aorta, were calculated for the entire tumor and within three peripheral layers automatically segmented (ie, 2-mm-thick concentric subvolumes). The expression of the membranous carbonic anhydrase (mCA) IX, a marker of tumor hypoxia, was assessed in tumor specimens. Comparative analyses according to the histologic subtypes, type of resected tumors, and mCA IX expression were performed. Results There were 33 mCA IX-positive tumors and 16 mCA IX-negative tumors. In the entire tumor, the mean normalized iodine uptake was higher on delayed than on first-pass acquisitions (0.35 ± 0.17 vs 0.13 ± 0.15, respectively; P < .001). A single layer, located at the edge of the tumor, showed higher values of the iodine concentration (median, 0.53 mg/mL vs 0.21 mg/mL, respectively; P = .03) and normalized iodine uptake (0.04 vs 0.02, respectively; P = .03) at first pass in mCA IX-positive versus mCA IX-negative tumors. Within this layer, a functional profile of neovascularization was found in 23 of 33 (70%) of mCA IX-positive tumors, and the median mCA IX score of these tumors was higher than in tumors with a nonfunctional profile of neovascularization (median mCA IX score, 20 vs 2, respectively; P = .03). Conclusion A two-phase dual-energy CT examination depicted higher perfusion between the tumor edge and lung parenchyma in hypoxic tumors. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Murphy and Ryan in this issue.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Biomarcadores Tumorais/metabolismo , Anidrases Carbônicas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Meios de Contraste , Feminino , Humanos , Iopamidol/análogos & derivados , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Neovascularização Patológica/diagnóstico por imagem , Estudos Prospectivos , Interpretação de Imagem Radiográfica Assistida por Computador
2.
Nature ; 462(7276): 1070-4, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20033049

RESUMO

The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potent against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.


Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Pulmão/efeitos dos fármacos , Camundongos , Modelos Químicos , Modelos Moleculares , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA