Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biomed J ; : 100701, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38281699

RESUMO

BACKGROUND: Iron deficiency is the top leading cause of anaemia, whose treatment has been shown to deteriorate gut health. However, a comprehensive analysis of the intestinal barrier and the gut microbiome during IDA have not been performed to date. This study aims to delve further into the analysis of these two aspects, which will mean a step forward minimising the negative impact of iron supplements on intestinal health. METHODS: IDA was experimentally induced in an animal model. Shotgun sequencing was used to analyse the gut microbiome in the colonic region, while the intestinal barrier was studied through histological analyses, mRNA sequencing (RNA-Seq), qPCR and immunofluorescence. Determinations of lipopolysaccharide (LPS) and bacteria-specific immunoglobulins were performed to assess microbial translocation. RESULTS: Microbial metabolism in the colon shifted towards an increased production of certain amino acids, short chain fatty acids and nucleotides, with Clostridium species being enriched during IDA. Structural alterations of the colonic epithelium were shown by histological analysis. RNA-Seq revealed a downregulation of extracellular matrix-associated genes and proteins and an overall underdeveloped epithelium. Increased levels of serum LPS and an increased immune response against dysbiotic bacteria support an impairment in the integrity of the gut barrier during IDA. CONCLUSIONS: IDA negatively impacts the gut microbiome and the intestinal barrier, triggering an increased microbial translocation. This study emphasizes the deterioration of gut health during IDA and the fact that it should be addressed when treating the disease.

2.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801752

RESUMO

Bovine mastitis is a significant economic burden for dairy enterprises, responsible for premature culling, prophylactic and therapeutic antibiotic use, reduced milk production and the withholding (and thus wastage) of milk. There is a desire to identify novel antimicrobials that are expressly directed to veterinary applications, do not require a lengthy milk withholding period and that will not have a negative impact on the growth of lactic acid bacteria involved in downstream dairy fermentations. Nisin is the prototypical lantibiotic, a family of highly modified antimicrobial peptides that exhibit potent antimicrobial activity against many Gram-positive microbes, including human and animal pathogens including species of Staphylococcus and Streptococcus. Although not yet utilized in the area of human medicine, nisin is currently applied as the active agent in products designed to prevent bovine mastitis. Over the last decade, we have harnessed bioengineering strategies to boost the specific activity and target spectrum of nisin against several problematic microorganisms. Here, we screen a large bank of engineered nisin derivatives to identify novel derivatives that exhibit improved specific activity against a selection of staphylococci, including mastitis-associated strains, but have unchanged or reduced activity against dairy lactococci. Three such peptides were identified; nisin A M17Q, nisin A T2L and nisin A HTK.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Lactococcus/efeitos dos fármacos , Mastite Bovina/microbiologia , Nisina/química , Staphylococcus/efeitos dos fármacos , Animais , Bioengenharia/métodos , Bovinos , Feminino , Testes de Sensibilidade Microbiana , Leite/microbiologia , Peptídeos/química , Engenharia de Proteínas/métodos
3.
Food Funct ; 11(12): 10279-10289, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33174573

RESUMO

Products containing probiotics are targeted at healthy or at-risk individuals as a preventative measure to minimise disease risk. Most studies assessing the efficacy of probiotics in humans include a mixture of healthy and unhealthy populations, while studies that focus solely on female populations are largely limited to pregnancy or those with health conditions. Pre-conception is a significant time-point during the life-course, and improving female health status during this period may positively influence future offspring. The objective of this review is to assess the effect of probiotics administered in oral capsule formulation, on metabolic and immune markers in healthy, non-pregnant women of reproductive age. This review followed the PRISMA guidelines. Pubmed, EMBASE, CINAHL, and Web of Science were searched for relevant studies. English language articles relating to randomised-controlled trials were included. The search returned 3250 publications after duplicates were removed. Title (2516), abstract (642), and full text (87) screening excluded 3993 studies from consideration. Five papers were identified with outcomes of interest, and analysis of these showed no conclusive evidence that probiotic capsule supplementation elicited positive effects in this healthy population. This study highlights the need for further research to investigate the role that probiotics play during the pre-conception period, on female metabolic and immune health.


Assuntos
Suplementos Nutricionais , Probióticos/administração & dosagem , Reprodução/efeitos dos fármacos , Feminino , Nível de Saúde , Humanos , Gravidez
4.
Int J Food Microbiol ; 333: 108778, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32731153

RESUMO

Kombucha is a fermented tea. Here we investigate the fermentation kinetics, metabolite production, microbiome and potential health promoting properties of three different kombucha consortia. Shotgun metagenomic sequencing revealed several dominant bacterial genera such as Komagataeibacter, Gluconacetobacter and Gluconobacter. Brettanomyces and Schizosaccharomyces were the most dominant yeasts identified. Species distribution reflected different patterns of sugar consumption, with S. pombe being present in samples with the highest sugar conversion. Liquid-liquid extractions were performed with organic solvents in order to obtain dried extracts, which were later characterized. HPLC-DAD and GC-MS analysis revealed differences in the production of organic acids, sugars, alcohols and phenolic compounds, where the presence of caffeine, propanoic acid and 2,3 butanediol differ greatly across the three kombuchas. Metabolomic analysis exhibited a link between the microbiota and the production of bioactive compounds in kombucha fermentation. In vitro assays were carried out in order to evaluate potential health-promoting features of the fermented teas, with notable outcomes including antioxidant ability against DPPH radical and against the 15-lipoxygenase enzyme, indicating a potential anti-inflammatory activity. These investigations considerably enhance our understanding of the relationship between the microbiota and metabolites as well as health promoting potential of kombucha and have the potential for the development of future generations of kombucha products in which these relationships are optimized.


Assuntos
Fermentação/fisiologia , Chá de Kombucha/análise , Chá de Kombucha/microbiologia , Compostos Fitoquímicos/análise , Antioxidantes/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma/fisiologia , Metagenoma/genética , Microbiota/fisiologia , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
5.
Gut Microbes ; 12(1): 1704141, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32403964

RESUMO

Chronic low-grade inflammation associated with obesity may be a target for improvement of metabolic health. Some exopolysaccharide (EPS)-producing bacteria have been shown to have anti-inflammatory effects in gastrointestinal inflammatory conditions. However, evidence for the role of EPS-producing probiotics in the management of obesity and associated conditions is scarce and the role of the microbiota is unclear. In this study, two probiotic candidates were screened for their effects on metabolic health using the diet-induced obesity (DIO) mouse model. Mice fed a high-fat diet supplemented with the anti-inflammatory, EPS-producing strain L. caseiLC-XCAL™ showed significantly reduced hepatic triglycerides, hepatic total cholesterol, and fat pad weight compared to those fed a high-fat diet alone, likely as a result of reduced energy absorption from food. 16-S rRNA amplicon analysis of the fecal microbiota of these mice indicated that the altered metabolic phenotype as a result of the L. casei LC-XCAL strain administration was not associated with an overall change in the composition or inferred functional capacity of the fecal microbiota despite some abundance changes in individual taxa and functions. These findings provide evidence that specific microbial strategies can improve metabolic health independent of the microbiome and reinforce the importance of carefully selecting the most appropriate strain for specific indications by thorough screening programmes.


Assuntos
Anti-Inflamatórios/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Lacticaseibacillus casei/metabolismo , Obesidade/dietoterapia , Probióticos/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Dieta Hiperlipídica , Suplementos Nutricionais , Modelos Animais de Doenças , Trato Gastrointestinal/microbiologia , Lacticaseibacillus casei/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem
6.
Gut Microbes ; 11(1): 1-20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31116628

RESUMO

The human intestinal commensal microbiota and associated metabolic products have long been regarded as contributors to host health. As the identity and activities of the various members of this community have become clearer, newly identified health-associated bacteria, such as Faecalibacterium prausnitzii, Akkermansia muciniphila, Ruminococcus bromii and Roseburia species, have emerged. Notably, the abundance of many of these bacteria is inversely correlated to several disease states. While technological and regulatory hurdles may limit the use of strains from these taxa as probiotics, it should be possible to utilize prebiotics and other dietary components to selectively enhance their growth in situ. Dietary components of potential relevance include well-established prebiotics, such as galacto-oligosaccharides, fructo-oligosaccharides and inulin, while other putative prebiotics, such as other oligosaccharides, polyphenols, resistant starch, algae and seaweed as well as host gut metabolites such as lactate and acetate, may also be applied with the aim of selectively and/or differentially affecting the beneficial bacterial community within the gastrointestinal environment. The present review provides an overview of the dietary components that could be applied in this manner.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal , Prebióticos/microbiologia , Probióticos/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Minerais/metabolismo , Oligossacarídeos/metabolismo , Polifenóis/metabolismo , Probióticos/uso terapêutico , Alga Marinha
7.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31519656

RESUMO

As previous studies have demonstrated a link between the porcine intestinal microbiome and feed efficiency (FE), microbiota manipulation may offer a means of improving FE in pigs. A fecal microbiota transplantation procedure (FMTp), using fecal extracts from highly feed-efficient pigs, was performed in pregnant sows (n = 11), with a control group (n = 11) receiving no FMTp. At weaning, offspring were allocated, within sow treatment, to (i) control (n = 67; no dietary supplement) or (ii) inulin (n = 65; 6-week dietary inulin supplementation) treatments. The sow FMTp, alone or in combination with inulin supplementation in offspring, reduced offspring body weight by 8.1 to 10.6 kg at ∼140 days of age, but there was no effect on feed intake. It resulted in better FE, greater bacterial diversity, and higher relative abundances of potentially beneficial bacterial taxa (Fibrobacter and Prevotella) in offspring. Due to the FMTp and/or inulin supplementation, relative abundances of potential pathogens (Chlamydia and Treponema) in the ileum and cecal concentrations of butyric acid were significantly lower. The maternal FMTp led to a greater number of jejunal goblet cells in offspring. Inulin supplementation alone did not affect growth or FE but upregulated duodenal genes linked to glucose and volatile fatty acid homeostasis and increased the mean platelet volume but reduced ileal propionic acid concentrations, granulocyte counts, and serum urea concentrations. Overall, the FMTp in pregnant sows, with or without dietary inulin supplementation in offspring, beneficially modulated offspring intestinal microbiota (albeit mostly low-relative-abundance taxa) and associated physiological parameters. Although FE was improved, the detrimental effect on growth limits the application of this FMTp-inulin strategy in commercial pig production.IMPORTANCE As previous research suggests a link between microbiota and FE, modulation of the intestinal microbiome may be effective in improving FE in pigs. The FMTp in gestating sows, alone or in combination with postweaning dietary inulin supplementation in offspring, achieved improvements in FE and resulted in a higher relative abundance of intestinal bacteria associated with fiber degradation and a lower relative abundance of potential pathogens. However, there was a detrimental effect on growth, although this may not be wholly attributable to microbiota transplantation, as antibiotic and other interventions were also part of the FMT regimen. Therefore, further work with additional control groups is needed to disentangle the effects of each component of the FMTp in order to develop a regimen with practical applications in pig production. Additional research based on findings from this study may also identify specific dietary supplements for the promotion/maintenance of the microbiota transferred via the maternal FMTp, thereby optimizing pig growth and FE.


Assuntos
Peso Corporal , Suplementos Nutricionais , Transplante de Microbiota Fecal/veterinária , Microbioma Gastrointestinal , Inulina/administração & dosagem , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Metabolismo Energético , Fezes/microbiologia , Feminino , Gravidez , Suínos/crescimento & desenvolvimento , Desmame
8.
Sci Rep ; 9(1): 4062, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858509

RESUMO

In this study, shotgun metagenomics was employed to monitor the effect of oxytetracycline, administered at a therapeutic dose, on the dynamics of the microbiota and resistome in the feces of weaned pigs. Sixteen weaning pigs were assigned to one of two treatments including standard starter diet for 21 days or antibiotic-supplemented diet (10 g oxytetracycline/100 kg body weight/day) for 7 days, followed by 14 days of standard starter diet. Feces were collected from the pigs on days 0, 8, and 21 for microbiota and resistome profiling. Pigs receiving oxytetracycline exhibited a significantly greater richness (ANOVA, P = 0.034) and diversity (ANOVA, P = 0.048) of antibiotic resistance genes (ARGs) than the control pigs. Antibiotic administration significantly enriched the abundances of 41 ARGs, mainly from the tetracycline, betalactam and multidrug resistance classes. Compositional shifts in the bacterial communities were observed following 7 days of antibiotic adminstration, with the medicated pigs showing an increase in Escherichia (Proteobacteria) and Prevotella (Bacteroidetes) populations compared with the nonmedicated pigs. This might be explained by the potential of these taxa to carry ARGs that may be transferred to other susceptible bacteria in the densely populated gut environment. These findings will help in the optimization of therapeutic schemes involving antibiotic usage in swine production.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metagenômica , Oxitetraciclina/farmacologia , Animais , Antibacterianos/farmacologia , Bactérias , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Suplementos Nutricionais , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Escherichia/efeitos dos fármacos , Escherichia/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Proteobactérias/efeitos dos fármacos , Proteobactérias/genética , RNA Ribossômico 16S/genética , Suínos/genética , Desmame
9.
Food Microbiol ; 65: 254-263, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28400011

RESUMO

Cronobacter sakazakii and Escherichia coli O157:H7 are well known food-borne pathogens that can cause severe disease. The identification of new alternatives to heating to control these pathogens in foods, while reducing the impact on organoleptic properties and nutritional value, is highly desirable. In this study, nisin and its bioengineered variants, nisin V and nisin S29A, are used alone, or in combination with plant essential oils (thymol, carvacrol and trans-cinnamaldehyde) or citric acid, with a view to controlling C. sakazakii and E. coli O157:H7 in laboratory-based assays and model food systems. The use of nisin variants (30 µM) with low concentrations of thymol (0.015%), carvacrol (0.03%) and trans-cinnamaldehyde (0.035%) resulted in extended lag phases of growth compared to those for corresponding nisin A-essential oil combinations. Furthermore, nisin variants (60 µM) used in combination with carvacrol (0.03%) significantly reduced viable counts of E. coli O157:H7 (3-log) and C. sakazakii (4-log) compared to nisin A-carvacrol treatment. Importantly, this increased effectiveness translated into food. More specifically, sub-inhibitory concentrations of nisin variants and carvacrol caused complete inactivation of E. coli O157:H7 in apple juice within 3 h at room temperature compared to that of the equivalent nisin A combination. Furthermore, combinations of commercial Nisaplin and the food additive citric acid reduced C. sakazakii numbers markedly in infant formula within the same 3 h period. These results highlight the potential benefits of combining nisin and variants thereof with carvacrol and/or citric acid for the inhibition of Gram negative food-borne pathogens.


Assuntos
Ácido Cítrico/farmacologia , Cronobacter sakazakii/efeitos dos fármacos , Escherichia coli O157/efeitos dos fármacos , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Nisina/análogos & derivados , Óleos de Plantas/farmacologia , Acroleína/análogos & derivados , Acroleína/farmacologia , Antibacterianos/farmacologia , Bioengenharia , Contagem de Colônia Microbiana , Cronobacter sakazakii/crescimento & desenvolvimento , Cimenos , Escherichia coli O157/crescimento & desenvolvimento , Aromatizantes/farmacologia , Microbiologia de Alimentos , Sucos de Frutas e Vegetais/microbiologia , Humanos , Lactente , Fórmulas Infantis/microbiologia , Malus , Monoterpenos/farmacologia , Nisina/química , Nisina/farmacologia , Timol/farmacologia
10.
Am J Physiol Endocrinol Metab ; 313(1): E1-E11, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28325732

RESUMO

We tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway.


Assuntos
Adiposidade/fisiologia , Proteínas Alimentares/farmacologia , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Neuropeptídeos/genética , Proteínas do Soro do Leite/farmacologia , Administração Oral , Animais , Proteínas Alimentares/metabolismo , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/fisiologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Absorção Intestinal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo
11.
Br J Nutr ; 113(5): 728-38, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25697178

RESUMO

The main aim of the present study was to investigate the effects of dietary trans-10, cis-12-conjugated linoleic acid (t10c12-CLA) on intestinal microbiota composition and SCFA production. C57BL/6 mice (n 8 per group) were fed a standard diet either supplemented with t10c12-CLA (0·5 %, w/w) (intervention) or with no supplementation (control), daily for 8 weeks. Metabolic markers (serum glucose, leptin, insulin and TAG, and liver TAG) were assessed by ELISA commercial kits, tissue long-chain fatty acids and caecal SCFA by GC, and microbial composition by 16S rRNA pyrosequencing. Dietary t10c12-CLA significantly decreased visceral fat mass (P< 0·001), but did not affect body weight (intervention), when compared with no supplementation (control). Additionally, lipid mass and composition were affected by t10c12-CLA intake. Caecal acetate, propionate and isobutyrate concentrations were higher (P< 0·05) in the t10c12-CLA-supplemented group than in the control group. The analysis of the microbiota composition following 8 weeks of t10c12-CLA supplementation revealed lower proportions of Firmicutes (P= 0·003) and higher proportions of Bacteroidetes (P= 0·027) compared with no supplementation. Furthermore, t10c12-CLA supplementation for 8 weeks significantly altered the gut microbiota composition, harbouring higher proportions of Bacteroidetes, including Porphyromonadaceae bacteria previously linked with negative effects on lipid metabolism and induction of hepatic steatosis. These results indicate that the mechanism of dietary t10c12-CLA on lipid metabolism in mice may be, at least, partially mediated by alterations in gut microbiota composition and functionality.


Assuntos
Fármacos Antiobesidade/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Ácidos Linoleicos Conjugados/efeitos adversos , Microbiota , Adiposidade , Animais , Bacteroidetes/classificação , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/metabolismo , Ceco , Ácidos Graxos Voláteis/análise , Conteúdo Gastrointestinal/química , Conteúdo Gastrointestinal/microbiologia , Mucosa Intestinal/metabolismo , Gordura Intra-Abdominal/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Tipagem Molecular , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Tamanho do Órgão
12.
J Nutr ; 144(12): 1956-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25320181

RESUMO

BACKGROUND: Probiotic bacteria have been associated with a reduction in cardiovascular disease risk, a leading cause of death and disability. OBJECTIVES: The aim of this study was to assess the impact of dietary administration of exopolysaccharide-producing probiotic Lactobacillus cultures on lipid metabolism and gut microbiota in apolipoprotein E (apoE)-deficient mice. METHODS: First, we examined lipid metabolism in response to dietary supplementation with recombinant ß-glucan-producing Lactobacillus paracasei National Food Biotechnology Centre (NFBC) 338 expressing the glycosyltransferase (Gtf) gene from Pediococcus parvulus 2.6 (GTF), and naturally exopolysaccharide-producing Lactobacillus mucosae Dairy Product Culture Collection (DPC) 6426 (DPC 6426) compared with the non-ß-glucan-producing isogenic control strain Lactobacillus paracasei NFBC 338 (PNZ) and placebo (15% wt:vol trehalose). Second, we examined the effects on the gut microbiota of dietary administration of DPC 6426 compared with placebo. Probiotic Lactobacillus strains at 1 × 10(9) colony-forming units/d per animal were administered to apoE(-/-) mice fed a high-fat (60% fat)/high-cholesterol (2% wt:wt) diet for 12 wk. At the end of the study, aortic plaque development and serum, liver, and fecal variables involved in lipid metabolism were analyzed, and culture-independent microbial analyses of cecal content were performed. RESULTS: Total cholesterol was reduced in serum (P < 0.001; ∼33-50%) and liver (P < 0.05; ∼30%) and serum triglyceride concentrations were reduced (P < 0.05; ∼15-25%) in mice supplemented with GTF or DPC 6426 compared with the PNZ or placebo group, respectively. In addition, dietary intervention with GTF led to increased amounts of fecal cholesterol excretion (P < 0.05) compared with all other groups. Compositional sequencing of the gut microbiota revealed a greater prevalence of Porphyromonadaceae (P = 0.001) and Prevotellaceae (P = 0.001) in the DPC 6426 group and lower proportions of Clostridiaceae (P < 0.05), Peptococcaceae (P < 0.001), and Staphylococcaceae (P < 0.01) compared with the placebo group. CONCLUSION: Ingestion of exopolysaccharide-producing lactobacilli resulted in seemingly favorable improvements in lipid metabolism, which were associated with changes in the gut microbiota of mice.


Assuntos
Colesterol/sangue , Glicosiltransferases/metabolismo , Lactobacillus/metabolismo , Metabolismo dos Lipídeos , Microbiota , Probióticos/administração & dosagem , Animais , Apolipoproteínas E/genética , Aterosclerose/prevenção & controle , Dieta , Suplementos Nutricionais , Modelos Animais de Doenças , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Regulação Enzimológica da Expressão Gênica , Glicosiltransferases/genética , Lactobacillus/genética , Fígado/metabolismo , Camundongos , Camundongos Knockout , Pediococcus/enzimologia , Triglicerídeos/sangue , Molécula 1 de Adesão de Célula Vascular/sangue , beta-Glucanas/sangue
13.
PLoS One ; 9(2): e88904, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24520424

RESUMO

Macronutrient quality and composition are important determinants of energy balance and the gut microbiota. Here, we investigated how changes to protein quality (casein versus whey protein isolate; WPI) and the protein to carbohydrate (P/C) ratio within a high fat diet (HFD) impacts on these parameters. Mice were fed a low fat diet (10% kJ) or a high fat diet (HFD; 45% kJ) for 21 weeks with either casein (20% kJ, HFD) or WPI at 20%, 30% or 40% kJ. In comparison to casein, WPI at a similar energy content normalised energy intake, increased lean mass and caused a trend towards a reduction in fat mass (P = 0.08), but the protein challenge did not alter oxygen consumption or locomotor activity. WPI reduced HFD-induced plasma leptin and liver triacylglycerol, and partially attenuated the reduction in adipose FASN mRNA in HFD-fed mice. High throughput sequence-based analysis of faecal microbial populations revealed microbiota in the HFD-20% WPI group clustering closely with HFD controls, although WPI specifically increased Lactobacillaceae/Lactobacillus and decreased Clostridiaceae/Clostridium in HFD-fed mice. There was no effect of increasing the P/C ratio on energy intake, but the highest ratio reduced HFD-induced weight gain, fat mass and plasma triacylglycerol, non-esterified fatty acids, glucose and leptin levels, while it increased lean mass and oxygen consumption. Similar effects were observed on adipose mRNA expression, where the highest ratio reduced HFD-associated expression of UCP-2, TNFα and CD68 and increased the diet-associated expression of ß3-AR, LPL, IR, IRS-1 and GLUT4. The P/C ratio also impacted on gut microbiota, with populations in the 30/40% WPI groups clustering together and away from the 20% WPI group. Taken together, our data show that increasing the P/C ratio has a dramatic effect on energy balance and the composition of gut microbiota, which is distinct from that caused by changes to protein quality.


Assuntos
Metabolismo dos Carboidratos , Dieta Hiperlipídica , Metabolismo Energético , Trato Gastrointestinal/microbiologia , Microbiota , Proteínas/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Aminoácidos/sangue , Animais , Composição Corporal/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios/sangue , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Proteínas do Leite/farmacologia , Proteínas do Soro do Leite
14.
Br J Nutr ; 111(11): 1905-17, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24555449

RESUMO

Different dietary fat and energy subtypes have an impact on both the metabolic health and the intestinal microbiota population of the host. The present study assessed the impact of dietary fat quality, with a focus on dietary fatty acid compositions of varying saturation, on the metabolic health status and the intestinal microbiota composition of the host. C57BL/6J mice (n 9-10 mice per group) were fed high-fat (HF) diets containing either (1) palm oil, (2) olive oil, (3) safflower oil or (4) flaxseed/fish oil for 16 weeks and compared with mice fed low-fat (LF) diets supplemented with either high maize starch or high sucrose. Tissue fatty acid compositions were assessed by GLC, and the impact of the diet on host intestinal microbiota populations was investigated using high-throughput 16S rRNA sequencing. Compositional sequencing analysis revealed that dietary palm oil supplementation resulted in significantly lower populations of Bacteroidetes at the phylum level compared with dietary olive oil supplementation (P< 0·05). Dietary supplementation with olive oil was associated with an increase in the population of the family Bacteroidaceae compared with dietary supplementation of palm oil, flaxseed/fish oil and high sucrose (P< 0·05). Ingestion of the HF-flaxseed/fish oil diet for 16 weeks led to significantly increased tissue concentrations of EPA, docosapentaenoic acid and DHA compared with ingestion of all the other diets (P< 0·05); furthermore, the diet significantly increased the intestinal population of Bifidobacterium at the genus level compared with the LF-high-maize starch diet (P< 0·05). These data indicate that both the quantity and quality of fat have an impact on host physiology with further downstream alterations to the intestinal microbiota population, with a HF diet supplemented with flaxseed/fish oil positively shaping the host microbial ecosystem.


Assuntos
Gorduras na Dieta/administração & dosagem , Ácidos Graxos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Animais , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/isolamento & purificação , Dieta Hiperlipídica , Ácido Eicosapentaenoico/análise , Ácidos Graxos Insaturados/análise , Óleos de Peixe/administração & dosagem , Intestinos/microbiologia , Óleo de Semente do Linho/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Azeite de Oliva/administração & dosagem , Óleo de Palmeira , Óleos de Plantas/administração & dosagem , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Food Microbiol ; 38: 171-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24290641

RESUMO

Kombucha is a sweetened tea beverage that, as a consequence of fermentation, contains ethanol, carbon dioxide, a high concentration of acid (gluconic, acetic and lactic) as well as a number of other metabolites and is thought to contain a number of health-promoting components. The sucrose-tea solution is fermented by a symbiosis of bacteria and yeast embedded within a cellulosic pellicle, which forms a floating mat in the tea, and generates a new layer with each successful fermentation. The specific identity of the microbial populations present has been the focus of attention but, to date, the majority of studies have relied on culture-based analyses. To gain a more comprehensive insight into the kombucha microbiota we have carried out the first culture-independent, high-throughput sequencing analysis of the bacterial and fungal populations of 5 distinct pellicles as well as the resultant fermented kombucha at two time points. Following the analysis it was established that the major bacterial genus present was Gluconacetobacter, present at >85% in most samples, with only trace populations of Acetobacter detected (<2%). A prominent Lactobacillus population was also identified (up to 30%), with a number of sub-dominant genera, not previously associated with kombucha, also being revealed. The yeast populations were found to be dominated by Zygosaccharomyces at >95% in the fermented beverage, with a greater fungal diversity present in the cellulosic pellicle, including numerous species not identified in kombucha previously. Ultimately, this study represents the most accurate description of the microbiology of kombucha to date.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Chá/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Fermentação , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Análise de Sequência de DNA
16.
Environ Sci Technol ; 47(13): 7110-9, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23745718

RESUMO

Bauxite residue is the alkaline byproduct generated when alumina is extracted from bauxite ores and is commonly deposited in impoundments. These sites represent hostile environments with increased salinity and alkalinity and little prospect of revegetation when left untreated. This study reports the establishment of bacterial communities in bauxite residues with and without restoration amendments (compost and gypsum addition, revegetation) in samples taken in 2009 and 2011 from 0 to 10 cm depth. DNA fingerprint analysis of bacterial communities based on 16S rRNA gene fragments revealed a significant separation of the untreated site and the amended sites in both sampling years. 16S amplicon analysis (454 FLX pyrosequencing) revealed significantly lower alpha diversities in the unamended in comparison to the amended sites and hierarchical clustering separated the unamended site from the amended sites. The taxonomic analysis revealed that the restoration resulted in the accumulation of bacterial populations typical for soils including Acidobacteriaceae, Nitrosomonadaceae, and Caulobacteraceae. In contrast, the unamended site was dominated by taxonomic groups including Beijerinckiaceae, Xanthomonadaceae, Acetobacteraceae, and Chitinophagaceae, repeatedly associated with alkaline salt lakes and sediments. While bacterial communities developed in the initially sterile bauxite residue, only the restoration treatments created diverse soil-like bacterial communities alongside diverse vegetation on the surface.


Assuntos
Óxido de Alumínio , Bactérias/genética , Bactérias/classificação , Sulfato de Cálcio/química , DNA Bacteriano/genética , Recuperação e Remediação Ambiental , Irlanda , Plantas , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
17.
J Physiol Biochem ; 69(1): 155-63, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22535285

RESUMO

Body weight is determined by the balance between energy intake and energy expenditure. When energy intake exceeds energy expenditure, the surplus energy is stored as fat in the adipose tissue, which causes its expansion and may even lead to the development of obesity. Thus, there is a growing interest to develop dietary interventions that could reduce the current obesity epidemic. In this regard, data from a number of in vivo and in vitro studies suggest that the branched-chain amino acid leucine influences energy balance. However, this has not been consistently reported. Here, we review the literature related to the effects of leucine on energy intake, energy expenditure and lipid metabolism as well as its effects on the cellular activity in the brain (hypothalamus) and in peripheral tissues (gastro-intestinal tract, adipose tissue, liver and muscle) regulating the above physiological processes. Moreover, we discuss how obesity may influence the actions of this amino acid.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Leucina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Peso Corporal/efeitos dos fármacos , Dieta , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Leucina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/fisiopatologia
18.
Am J Clin Nutr ; 95(5): 1278-87, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22492373

RESUMO

BACKGROUND: We previously showed that microbial metabolism in the gut influences the composition of bioactive fatty acids in host adipose tissue. OBJECTIVE: This study compared the effect of dietary supplementation for 8 wk with human-derived Bifidobacterium breve strains on fat distribution and composition and the composition of the gut microbiota in mice. METHODS: C57BL/6 mice (n = 8 per group) received B. breve DPC 6330 or B. breve NCIMB 702258 (10(9) microorganisms) daily for 8 wk or no supplement (controls). Tissue fatty acid composition was assessed by gas-liquid chromatography while 16S rRNA pyrosequencing was used to investigate microbiota composition. RESULTS: Visceral fat mass and brain stearic acid, arachidonic acid, and DHA were higher in mice supplemented with B. breve NCIMB 702258 than in mice in the other 2 groups (P < 0.05). In addition, both B. breve DPC 6330 and B. breve NCIMB 702258 supplementation resulted in higher propionate concentrations in the cecum than did no supplementation (P < 0.05). Compositional sequencing of the gut microbiota showed a tendency for greater proportions of Clostridiaceae (25%, 12%, and 18%; P = 0.08) and lower proportions of Eubacteriaceae (3%, 12%, and 13%; P = 0.06) in mice supplemented with B. breve DPC 6330 than in mice supplemented with B. breve NCIMB 702258 and unsupplemented controls, respectively. CONCLUSION: The response of fatty acid metabolism to administration of bifidobacteria is strain-dependent, and strain-strain differences are important factors that influence modulation of the gut microbial community by ingested microorganisms.


Assuntos
Bifidobacterium/classificação , Encéfalo/metabolismo , Suplementos Nutricionais , Ácidos Graxos/química , Trato Gastrointestinal/microbiologia , Metagenoma , Administração Oral , Animais , Cromatografia Gasosa , Ácidos Graxos/análise , Fezes/microbiologia , Trato Gastrointestinal/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA