RESUMO
Fibroblast growth factor 23 (FGF23) is a phosphate-regulating (Pi-regulating) hormone produced by bone. Hereditary hypophosphatemic disorders are associated with FGF23 excess, impaired skeletal growth, and osteomalacia. Blocking FGF23 became an effective therapeutic strategy in X-linked hypophosphatemia, but testing remains limited in autosomal recessive hypophosphatemic rickets (ARHR). This study investigates the effects of Pi repletion and bone-specific deletion of Fgf23 on bone and mineral metabolism in the dentin matrix protein 1-knockout (Dmp1KO) mouse model of ARHR. At 12 weeks, Dmp1KO mice showed increased serum FGF23 and parathyroid hormone levels, hypophosphatemia, impaired growth, rickets, and osteomalacia. Six weeks of dietary Pi supplementation exacerbated FGF23 production, hyperparathyroidism, renal Pi excretion, and osteomalacia. In contrast, osteocyte-specific deletion of Fgf23 resulted in a partial correction of FGF23 excess, which was sufficient to fully restore serum Pi levels but only partially corrected the bone phenotype. In vitro, we show that FGF23 directly impaired osteoprogenitors' differentiation and that DMP1 deficiency contributed to impaired mineralization independent of FGF23 or Pi levels. In conclusion, FGF23-induced hypophosphatemia is only partially responsible for the bone defects observed in Dmp1KO mice. Our data suggest that combined DMP1 repletion and FGF23 blockade could effectively correct ARHR-associated mineral and bone disorders.
Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Osteomalacia , Animais , Camundongos , Calcificação Fisiológica/genética , Proteínas da Matriz Extracelular/metabolismo , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos , Hipofosfatemia/genética , Camundongos Knockout , Minerais/metabolismo , Osteomalacia/genética , Osteomalacia/metabolismoRESUMO
Iron deficiency, anemia, hyperphosphatemia, and increased fibroblast growth factor 23 (FGF23) are common and interrelated complications of chronic kidney disease (CKD) that are linked to CKD progression, cardiovascular disease and death. Ferric citrate is an oral phosphate binder that decreases dietary phosphate absorption and serum FGF23 concentrations while increasing iron stores and hemoglobin in patients with CKD. Here we compared the effects of ferric citrate administration versus a mineral sufficient control diet using the Col4a3 knockout mouse model of progressive CKD and age-matched wild-type mice. Ferric citrate was given to knockout mice for four weeks beginning at six weeks of age when they had overt CKD, or for six weeks beginning at four weeks of age when they had early CKD. Ten-week-old knockout mice on the control diet showed overt iron deficiency, anemia, hyperphosphatemia, increased serum FGF23, hypertension, decreased kidney function, and left ventricular systolic dysfunction. Ferric citrate rescued iron deficiency and anemia in knockout mice regardless of the timing of treatment initiation. Circulating levels and bone expression of FGF23 were reduced in knockout mice given ferric citrate with more pronounced reductions observed when ferric citrate was initiated in early CKD. Ferric citrate decreased serum phosphate only when it was initiated in early CKD. While ferric citrate mitigated systolic dysfunction in knockout mice regardless of timing of treatment initiation, early initiation of ferric citrate also reduced renal fibrosis and proteinuria, improved kidney function, and prolonged life span. Thus, initiation of ferric citrate treatment early in the course of murine CKD lowered FGF23, slowed CKD progression, improved cardiac function and significantly improved survival.
Assuntos
Compostos Férricos/uso terapêutico , Fatores de Crescimento de Fibroblastos/sangue , Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Autoantígenos/genética , Colágeno Tipo IV/genética , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Compostos Férricos/farmacologia , Fator de Crescimento de Fibroblastos 23 , Camundongos , Camundongos Knockout , Insuficiência Renal Crônica/sangueRESUMO
During chronic kidney disease (CKD), alterations in bone and mineral metabolism include increased production of the hormone fibroblast growth factor 23 (FGF23) that may contribute to cardiovascular mortality. The osteocyte protein dentin matrix protein 1 (DMP1) reduces FGF23 and enhances bone mineralization, but its effects in CKD are unknown. We tested the hypothesis that DMP1 supplementation in CKD would improve bone health, prevent FGF23 elevations and minimize consequent adverse cardiovascular outcomes. We investigated DMP1 regulation and effects in wild-type (WT) mice and the Col4a3-/- mouse model of CKD. Col4a3-/- mice demonstrated impaired kidney function, reduced bone DMP1 expression, reduced bone mass, altered osteocyte morphology and connectivity, increased osteocyte apoptosis, increased serum FGF23, hyperphosphatemia, left ventricular hypertrophy (LVH), and reduced survival. Genetic or pharmacological supplementation of DMP1 in Col4a3-/- mice prevented osteocyte apoptosis, preserved osteocyte networks, corrected bone mass, partially lowered FGF23 levels by attenuating NFAT-induced FGF23 transcription, and further increased serum phosphate. Despite impaired kidney function and worsened hyperphosphatemia, DMP1 prevented development of LVH and improved Col4a3-/- survival. Our data suggest that CKD reduces DMP1 expression, whereas its restoration represents a potential therapeutic approach to lower FGF23 and improve bone and cardiac health in CKD.
RESUMO
Synovium hyperplasia characterizes joint diseases, such as rheumatoid arthritis (RA). The cytotoxic effect of low-dose Cadmium (Cd) was tested in vitro and ex vivo on synoviocytes, the mesenchymal key effector cells of inflammation and proliferation in arthritis. The anti-inflammatory and anti-proliferative effects of Cd were tested in vivo by intra-articular injection in the adjuvant induced arthritis rat joints, where the clinical scores and the consequences of arthritis were evaluated. Cell death through apoptosis was highly induced by Cd in inflammatory synoviocytes (80% reduction of cell viability, p < 0.01). TNF plus IL-17 cytokine combination induced a two-fold increase of Cd cell content by enhancing the ZIP-8 importer and the MT-1 homeostasis regulator expression. Addition of Cd reduced IL-6 production in TNF plus IL-17-activated synoviocytes (up to 83%, p < 0.05) and in ex-vivo synovium biopsies (up to 94%, p < 0.01). Cd-injection in rat joints improved arthritis, reducing clinical scores (arthritic score reduced from 4 to 2, p < 0.01), inflammatory cell recruitment (up to 50%, p < 0.01) and protecting from bone/cartilage destruction. This proof of concept study is supported by the limited Cd spread in body reservoirs, with low-dose Cd providing a safe risk/benefit ratio, without toxic effects on other cell types and organs.