Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(12): 4868-4878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37506299

RESUMO

BACKGROUND: The fall armyworm Spodoptera frugiperda (J.E. Smith), is an important pest of agronomical crops. It is interesting to discover secondary metabolites in plants that are environmentally safer than synthetic pesticides. For this purpose, Combretum trifoliatum crude extract and its isolated compounds were investigated for their insecticidal activities against S. frugiperda. RESULTS: The median lethal dose (LD50 ) was evaluated in the second-instar larvae using the topical application method. The isolated compounds, apigenin and camphor, demonstrated a highly toxic effect on larvae at a lower LD50 dose than crude extract. Moreover, when the larvae were exposed to crude extract concentrations, the development to pupa and adult stages was reduced by more than 50%. The ovicidal toxicity was examined using a hand sprayer. The extract concentration 5, 10, and 20 µg/egg significantly decreased the egg hatchability. In addition, crude extract showed a significant difference in inhibiting acetylcholinesterase (AChE) activity while crude extract and camphor showed significant inhibitory effects on carboxylesterase (CE) and glutathione-S-transferase (GST) activities. CONCLUSION: The crude ethanol extract of Combretum trifoliatum was toxic to S. frugiperda in terms of larval mortality, negatively affecting biological parameters, and decreasing egg hatchability. Additionally, the activities of cholinergic and detoxifying enzymes were affected by crude extract and its isolated compounds. These results highlight that Combretum trifoliatum might be efficient as a bioinsecticide to control S. frugiperda. © 2023 Society of Chemical Industry.


Assuntos
Combretaceae , Combretum , Inseticidas , Myrtales , Animais , Inseticidas/farmacologia , Spodoptera , Combretum/metabolismo , Combretaceae/metabolismo , Myrtales/metabolismo , Cânfora/toxicidade , Acetilcolinesterase/metabolismo , Larva , Extratos Vegetais/farmacologia , Zea mays/metabolismo
2.
PLoS One ; 7(3): e32512, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427848

RESUMO

Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5'-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5'-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs) of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences) belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance of gene duplication and acquisition of paralog functional diversity in the evolution of specific invertebrate immune responses.


Assuntos
Biomphalaria/genética , Biomphalaria/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Transdução de Sinais/imunologia , Animais , Biomphalaria/microbiologia , Calmodulina/genética , Análise por Conglomerados , DNA Complementar/genética , Etiquetas de Sequências Expressas/metabolismo , Ferritinas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Mensageiro/metabolismo , Receptores de Reconhecimento de Padrão/genética , Transdução de Sinais/genética , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA