Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Elife ; 82019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31012845

RESUMO

The ability to flexibly use knowledge is one cardinal feature of goal-directed behaviors. We recently showed that thalamocortical and corticothalamic pathways connecting the medial prefrontal cortex and the mediodorsal thalamus (MD) contribute to adaptive decision-making (Alcaraz et al., 2018). In this study, we examined the impact of disconnecting the MD from its other main cortical target, the orbitofrontal cortex (OFC) in a task assessing outcome devaluation after initial instrumental training and after reversal of action-outcome contingencies. Crossed MD and OFC lesions did not impair instrumental performance. Using the same approach, we found however that disconnecting the OFC from its other main thalamic afferent, the submedius nucleus, produced a specific impairment in adaptive responding following action-outcome reversal. Altogether, this suggests that multiple thalamocortical circuits may act synergistically to achieve behaviorally relevant functions.


Assuntos
Adaptação Psicológica , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Tálamo/fisiologia , Animais , Comportamento Animal , Masculino , Ratos Long-Evans
2.
Elife ; 72018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29405119

RESUMO

Highly distributed neural circuits are thought to support adaptive decision-making in volatile and complex environments. Notably, the functional interactions between prefrontal and reciprocally connected thalamic nuclei areas may be important when choices are guided by current goal value or action-outcome contingency. We examined the functional involvement of selected thalamocortical and corticothalamic pathways connecting the dorsomedial prefrontal cortex (dmPFC) and the mediodorsal thalamus (MD) in the behaving rat. Using a chemogenetic approach to inhibit projection-defined dmPFC and MD neurons during an instrumental learning task, we show that thalamocortical and corticothalamic pathways differentially support goal attributes. Both pathways participate in adaptation to the current goal value, but only thalamocortical neurons are required to integrate current causal relationships. These data indicate that antiparallel flow of information within thalamocortical circuits may convey qualitatively distinct aspects of adaptive decision-making and highlight the importance of the direction of information flow within neural circuits.


Assuntos
Comportamento Animal , Córtex Cerebral/fisiologia , Objetivos , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Tomada de Decisões , Ratos
3.
Eur J Neurosci ; 44(3): 1972-86, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27319754

RESUMO

There is a growing interest in determining the functional contribution of thalamic inputs to cortical functions. In the context of adaptive behaviours, identifying the precise role of the mediodorsal thalamus (MD) in particular remains difficult despite the large amount of experimental data available. A better understanding of the thalamocortical connectivity of this region may help to capture its functional role. To address this issue, this study focused exclusively on the specific connections from the MD to the prefrontal cortex (PFC) by means of direct comparisons of labelling produced by single and dual injections of retrograde tracers in the different subdivisions of the PFC in the rat. We show that at least three parallel and essentially separate thalamocortical pathways originate from the MD, as follows: projections to the dorsal (1) and the ventral (2) subdivisions of the mPFC follow a mediolateral topography at the thalamic level (i.e. medial thalamic neurons target the mPFC ventrally whereas lateral thalamic neurons project dorsally), whereas a considerable innervation to the OFC (3) includes thalamic cells projecting to both the lateral and the ventral OFC subdivisions. These observations provide new insight on the functions of the MD and suggest a specific focus on each of these pathways for future functional studies.


Assuntos
Córtex Pré-Frontal/fisiologia , Tálamo/fisiologia , Animais , Masculino , Vias Neurais , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Ratos , Ratos Long-Evans , Tálamo/citologia
4.
J Neurosci ; 29(25): 8087-93, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19553448

RESUMO

Trace conditioning is considered a model of higher cognitive involvement in simple associative tasks. Studies of trace conditioning have shown that cortical areas and the hippocampal formation are required to associate events that occur at different times. However, the mechanisms that bridge the trace interval during the acquisition of trace conditioning remain unknown. In four experiments with fear conditioning in rats, we explored the involvement of the entorhinal cortex (EC) in the acquisition of fear under a trace-30 s protocol. We first determined that pretraining neurotoxic lesions of the EC selectively impaired trace-, but not delay-conditioned fear as evaluated by freezing behavior. A local cholinergic deafferentation of the EC using 192-IgG-saporin did not replicate this deficit, presumably because cholinergic interneurons were spared by the toxin. However, pretraining local blockade of EC muscarinic receptors with the M1 antagonist pirenzepine yielded a specific and dose-dependent deficit in trace-conditioned responses. The same microinjections performed after conditioning were without effect on trace fear responses. These effects of blocking M1 receptors are consistent with the notion that conditioned stimulus (CS)-elicited, acetylcholine-dependent persistent activities in the EC are needed to maintain a representation of a tone CS across the trace interval during the acquisition of trace conditioning. This function of the EC is consistent with recent views of this region as a short-term stimulus buffer.


Assuntos
Acetilcolina/metabolismo , Aprendizagem por Associação/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Córtex Entorrinal/fisiopatologia , Medo , Antagonistas Muscarínicos/farmacologia , Pirenzepina/farmacologia , Estimulação Acústica/métodos , Animais , Relação Dose-Resposta a Droga , Eletrochoque/métodos , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/patologia , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Agonistas de Aminoácidos Excitatórios/toxicidade , Imuno-Histoquímica , Imunotoxinas/administração & dosagem , Imunotoxinas/toxicidade , Masculino , Microinjeções , Antagonistas Muscarínicos/administração & dosagem , N-Metilaspartato/administração & dosagem , N-Metilaspartato/toxicidade , Pirenzepina/administração & dosagem , Ratos , Ratos Long-Evans , Tempo de Reação/efeitos dos fármacos , Receptor Muscarínico M1/antagonistas & inibidores , Reflexo de Sobressalto/efeitos dos fármacos , Proteínas Inativadoras de Ribossomos Tipo 1/administração & dosagem , Proteínas Inativadoras de Ribossomos Tipo 1/toxicidade , Saporinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA