Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31451500

RESUMO

The physiological factors that contribute to Mycobacterium abscessus lung infections remain unclear. We determined whether antibiotic treatment targeting a major cystic fibrosis pathogen (i.e., Pseudomonas aeruginosa) could provide the ideal conditions for the establishment of M. abscessus infection. Our data showed that P. aeruginosa inhibited M. abscessus biofilm formation under control conditions and that antimicrobial therapy selectively targeting P. aeruginosa diminished this competitive interaction, thereby increasing M. abscessus survival.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Mycobacterium abscessus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Escarro/microbiologia
2.
Eur Respir Rev ; 28(152)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31285289

RESUMO

The lungs of patients with cystic fibrosis (CF) are colonised by a microbial community comprised of pathogenic species, such as Pseudomonas aeruginosa and Staphylococcus aureus, and microorganisms that are typically not associated with worse clinical outcomes (considered as commensals). Antibiotics directed at CF pathogens are often not effective and a discrepancy is observed between activity of these agents in vitro and in the patient. This review describes how interspecies interactions within the lung microbiome might influence the outcome of antibiotic treatment targeted at common CF pathogens. Protective mechanisms by members of the microbiome such as antibiotic degradation (indirect pathogenicity), alterations of the cell wall, production of matrix components decreasing antibiotic penetration, and changes in metabolism are discussed. Interspecies interactions that increase bacterial susceptibility are also addressed. Furthermore, we discuss how experimental conditions, such as culture media, oxygen levels, incorporation of host-pathogen interactions, and microbial community composition may influence the outcome of microbial interaction studies related to antibiotic activity. Hereby, the importance to create in vitro conditions reflective of the CF lung microenvironment is highlighted. Understanding the role of the CF lung microbiome in antibiotic efficacy may help find novel therapeutic and diagnostic approaches to better tackle chronic lung infections in this patient population.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Pulmão/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Animais , Bactérias/patogenicidade , Tomada de Decisão Clínica , Fibrose Cística/diagnóstico , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Humanos , Pulmão/microbiologia , Testes de Sensibilidade Microbiana , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Resultado do Tratamento
3.
Trends Microbiol ; 27(10): 850-863, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31178124

RESUMO

Active bacterial metabolism is a prerequisite for optimal activity of many classes of antibiotics. Hence, bacteria have developed strategies to reduce or modulate metabolic pathways to become tolerant. This review describes the tight relationship between metabolism and tolerance in bacterial biofilms, and how physicochemical properties of the microenvironment at the host-pathogen interface (such as oxygen and nutritional content) are key to this relationship. Understanding how metabolic adaptations lead to tolerance brings us to novel approaches to tackle antibiotic-tolerant biofilms. We describe the use of hyperbaric oxygen therapy, metabolism-stimulating metabolites, and alternative strategies to redirect bacterial metabolism towards an antibiotic-susceptible phenotype.


Assuntos
Adaptação Fisiológica/fisiologia , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Heterogeneidade Genética , Oxigenoterapia Hiperbárica , Redes e Vias Metabólicas/efeitos dos fármacos , Fenótipo
4.
PLoS One ; 12(3): e0172723, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28248999

RESUMO

Burkholderia cenocepacia is an opportunistic pathogen responsible for life-threatening infections in cystic fibrosis patients. B. cenocepacia is extremely resistant towards antibiotics and therapy is complicated by its ability to form biofilms. We investigated the efficacy of an alternative antimicrobial strategy for B. cenocepacia lung infections using in vitro and in vivo models. A screening of the NIH Clinical Collection 1&2 was performed against B. cenocepacia biofilms formed in 96-well microtiter plates in the presence of tobramycin to identify repurposing candidates with potentiator activity. The efficacy of selected hits was evaluated in a three-dimensional (3D) organotypic human lung epithelial cell culture model. The in vivo effect was evaluated in the invertebrate Galleria mellonella and in a murine B. cenocepacia lung infection model. The screening resulted in 60 hits that potentiated the activity of tobramycin against B. cenocepacia biofilms, including four imidazoles of which econazole and miconazole were selected for further investigation. However, a potentiator effect was not observed in the 3D organotypic human lung epithelial cell culture model. Combination treatment was also not able to increase survival of infected G. mellonella. Also in mice, there was no added value for the combination treatment. Although potentiators of tobramycin with activity against biofilms of B. cenocepacia were identified in a repurposing screen, the in vitro activity could not be confirmed nor in a more sophisticated in vitro model, neither in vivo. This stresses the importance of validating hits resulting from in vitro studies in physiologically relevant model systems.


Assuntos
Biofilmes/efeitos dos fármacos , Infecções por Burkholderia/tratamento farmacológico , Burkholderia cenocepacia/fisiologia , Econazol/farmacologia , Miconazol/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Tobramicina/farmacologia , Células A549 , Animais , Biofilmes/crescimento & desenvolvimento , Infecções por Burkholderia/metabolismo , Infecções por Burkholderia/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada/métodos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/patologia
5.
PLoS One ; 7(5): e37116, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693569

RESUMO

The probiotic effects of Lactobacillus reuteri have been speculated to partly depend on its capacity to produce the antimicrobial substance reuterin during the reduction of glycerol in the gut. In this study, the potential of this process to protect human intestinal epithelial cells against infection with Salmonella enterica serovar Typhimurium was investigated. We used a three-dimensional (3-D) organotypic model of human colonic epithelium that was previously validated and applied to study interactions between S. Typhimurium and the intestinal epithelium that lead to enteric salmonellosis. Using this model system, we show that L. reuteri protects the intestinal cells against the early stages of Salmonella infection and that this effect is significantly increased when L. reuteri is stimulated to produce reuterin from glycerol. More specifically, the reuterin-containing ferment of L. reuteri caused a reduction in Salmonella adherence and invasion (1 log unit), and intracellular survival (2 log units). In contrast, the L. reuteri ferment without reuterin stimulated growth of the intracellular Salmonella population with 1 log unit. The short-term exposure to reuterin or the reuterin-containing ferment had no observed negative impact on intestinal epithelial cell health. However, long-term exposure (24 h) induced a complete loss of cell-cell contact within the epithelial aggregates and compromised cell viability. Collectively, these results shed light on a potential role for reuterin in inhibiting Salmonella-induced intestinal infections and may support the combined application of glycerol and L. reuteri. While future in vitro and in vivo studies of reuterin on intestinal health should fine-tune our understanding of the mechanistic effects, in particular in the presence of a complex gut microbiota, this the first report of a reuterin effect on the enteric infection process in any mammalian cell type.


Assuntos
Colo/citologia , Suplementos Nutricionais , Glicerol/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Limosilactobacillus reuteri/fisiologia , Salmonella typhimurium/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Fermentação/efeitos dos fármacos , Gliceraldeído/análogos & derivados , Gliceraldeído/metabolismo , Glicerol/metabolismo , Células HT29 , Humanos , Mucosa Intestinal/citologia , Limosilactobacillus reuteri/efeitos dos fármacos , Limosilactobacillus reuteri/metabolismo , Modelos Moleculares , Propano/metabolismo , Salmonella typhimurium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA