Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 792: 62-71, 1996 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-8678421

RESUMO

Transgenic plants have significant potential in the bioproduction of complex human therapeutic proteins due to ease of genetic manipulation, lack of potential contamination with human pathogens, conservation of eukaryotic cell machinery mediating protein modification, and low cost of biomass production. Tobacco has been used as our initial transgenic system because Agrobacterium-mediated transformation is highly efficient, prolific seed production greatly facilitates biomass scale-up, and development of new "health-positive" uses for tobacco has significant regional support. We have targeted bioproduction of complex recombinant human proteins with commercial potential as human pharmaceuticals. Human protein C (hPC), a highly processed serum protease of the coagulation/anticoagulation cascade, was produced at low levels in transgenic tobacco leaves. Analogous to its processing in mammalian systems, tobacco-synthesized hPC appears to undergo multiple proteolytic cleavages, disulfide bond formation, and N-linked glycosylation. Although tobacco-derived hPC has not yet been tested for all posttranslational modifications or for enzymatic (anticlotting) activity, these results are promising and suggest considerable conservation of protein processing machinery between plants and animals. CropTech researchers have also produced the human lysosomal enzyme glucocerebrosidase (hGC) in transgenic tobacco. This glycoprotein has significant commercial potential as replacement therapy in patients with Gaucher's disease. Regular intravenous administration of modified glucocerebrosidase, derived from human placentae or CHO cells, has proven highly effective in reducing disease manifestations in patients with Gaucher's disease. However, the enzyme is expensive (dubbed the "world's most expensive drug" by the media), making it a dramatic model for evaluating the potential of plants to provide a safe, low-cost source of bioactive human enzymes. Transgenic tobacco plants were generated that contained the human glucocerebrosidase cDNA under the control of an inducible plant promoter. hGC expression was demonstrated in plant extracts by enzyme activity assay and immunologic cross-reactivity with anti-hGC antibodies. Tobacco-synthesized hGC comigrates with human placental-derived hGC during electrophoretic separations, is glycosylated, and, most significantly, is enzymatically active. Although expression levels vary depending on transformant and induction protocol, hGC production of > 1 mg/g fresh weight of leaf tissue has been attained in crude extracts. Our studies provide strong support for the utilization of tobacco for high-level production of active hGC for purification and eventual therapeutic use at potentially much reduced costs. Furthermore, this technology should be directly adaptable to the production of a variety of other complex human proteins of biologic and pharmaceutical interest.


Assuntos
Enzimas/biossíntese , Nicotiana/genética , Plantas Tóxicas , Proteínas Recombinantes/biossíntese , Glucosilceramidase/biossíntese , Humanos , Plantas Geneticamente Modificadas , Proteína C/biossíntese
2.
Plant Physiol ; 101(2): 667-74, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8278509

RESUMO

Protein farnesyltransferase is a heterodimeric enzyme that attaches a farnesyl moiety to C-terminal cysteine residues. Both the alpha and beta subunits have recently been cloned and sequenced from yeast and rat. Degenerate oligonucleotides, corresponding to conserved regions of the beta subunit, were used as primers for the polymerase chain reaction to amplify cDNA synthesized from total cellular RNA from the apical buds of pea (Pisum sativum L.) seedlings. The 171-bp fragment obtained encodes an open reading frame of 57 amino acids showing 65% identity to the rat protein farnesyltransferase beta subunit. Using this fragment to screen a pea cDNA library, one full-length cDNA clone, designated PsFTb, was obtained that contains an open reading frame encoding a polypeptide of 419 amino acids. The predicted amino acid sequence exhibits 48 and 40% identity to the rat and yeast beta subunits, respectively, indicating that this cDNA encodes a pea homolog of the beta subunit of farnesyltransferase. Gel blot hybridizations show that PsFTb is likely to be encoded by a single-copy gene and is expressed as a transcript of approximately 1.7 kb. During photoregulated leaf development in continuous white light, PsFTb transcript levels within apical buds decline by approximately 5-fold.


Assuntos
Alquil e Aril Transferases , Fabaceae/genética , Plantas Medicinais , Transferases/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Fabaceae/enzimologia , Fabaceae/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Genes de Plantas , Genoma , Luz , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
3.
Plant Cell ; 3(4): 397-405, 1991 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-1840919

RESUMO

Potato genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) were expressed in response to pathogen, elicitor, and wounding. HMGR catalyzes the rate-limiting step in isoprenoid biosynthesis leading to accumulation of phytoalexins and steroid glycoalkaloids. Wounding caused increases in HMGR mRNA levels. A rapid and transient peak occurred 30 minutes after wounding, followed by a slower peak at 14 hours; both were correlated with increased enzyme activity. Induction of HMGR mRNA by the soft rot pathogen Erwinia carotovora subsp carotovora or arachidonic acid began 8 hours after challenge and continued through 22 hours. Potato HMGR is encoded by a gene family. An HMGR gene-specific probe was used to demonstrate that one isogene of the HMGR family is pathogen activated and is distinct from isogene(s) that are wound activated. This provides evidence that defense-related increases in HMGR activity are due to mRNA level increases and that HMGR isogenes are activated differentially by wounding or pathogen challenge.


Assuntos
Regulação da Expressão Gênica , Hidroximetilglutaril-CoA Redutases/genética , Solanum tuberosum/genética , Ácidos Araquidônicos/farmacologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Isoproterenol/metabolismo , Cinética , Família Multigênica , Pectobacterium carotovorum/fisiologia , Solanum tuberosum/enzimologia , Solanum tuberosum/microbiologia
4.
J Biol Chem ; 264(24): 14486-92, 1989 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-2760071

RESUMO

Phenylalanine ammonia-lyase (PAL) catalyzes the first reaction in the biosynthesis from phenylalanine of a wide variety of phenylpropanoid natural products including lignin, flavonoid pigments, and phytoalexins. In bean (Phaseolus vulgaris L.), PAL is encoded by a family of three genes. We show here by RNase protection with gene-specific probes that these genes are expressed differentially during development and in response to different environmental cues. While all three genes are expressed at high levels in roots, only PAL1 and PAL2 are expressed in shoots and only PAL1 is expressed in leaves. Strikingly, PAL2 is expressed at very high levels in petals, where PAL1 is only very weakly expressed and PAL3 is not expressed. All three genes are induced by mechanical wounding of hypocotyls, but fungal infection only activates PAL1 and PAL3. Illumination of etiolated hypocotyls activates PAL1 and PAL2 but not PAL3. Corresponding differential patterns of synthesis of specific PAL polypeptide isoforms were observed by two-dimensional gel electrophoretic analysis of in vitro translation products encoded by RNA isolated from hypocotyls stimulated by light, wounding, or infection. The specific isoforms encoded by transcripts of the three PAL genes were identified by inhibition of synthesis in vitro with gene-specific anti-sense transcripts followed by comparative two-dimensional gel electrophoretic analysis of the pattern of translation products. These data indicate that selective expression of PAL genes encoding functional variants is governed by a complex set of regulatory networks for developmental and environmental control of phenylpropanoid biosynthesis.


Assuntos
Adaptação Fisiológica , Amônia-Liases/genética , Fabaceae/enzimologia , Fenilalanina Amônia-Liase/genética , Proteínas de Plantas/genética , Plantas Medicinais , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Hibridização de Ácido Nucleico , Especificidade de Órgãos , Fenilalanina Amônia-Liase/fisiologia , Proteínas de Plantas/fisiologia , Polimorfismo Genético , Transcrição Gênica
5.
Eur J Biochem ; 149(2): 411-9, 1985 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-3996414

RESUMO

L-Phenylalanine ammonia-lyase (EC 4.3.1.5) has been purified over 200-fold from cell cultures of bean (phaseolus vulgaris L.) exposed to elicitor heat-released from the cell walls of the phytopathogenic fungus Colletotrichum lindemuthianum. Four forms of the enzyme, with identical Mr but differing apparent pI values of 5.4, 5.2, 5.05 and 4.85, were observed following the final chromatofocussing stage of the purification. A preparation (purified 43-fold by ammonium sulphate precipitation, gel-filtration and ion-exchange chromatography) containing all four forms exhibited apparent negative rate cooperativity with respect to substrates. However, the individual forms displayed normal Michaelis-Menten kinetics, with Km values of 0.077 mM, 0.122 mM, 0.256 mM and 0.302 mM in order of decreasing apparent pI value. A preparation purified 200-fold and containing all four forms was used to immunise rabbits for the production of anti-(phenylalanine ammonia-lyase) serum. The antiserum was characterised by: immunotitration experiments; solid phase enzyme-linked immunosorbent assays; comparison of immunoprecipitates of 35S-labelled phenylalanine ammonia-lyase subunits (synthesized both in vivo and in vitro) on both one-dimensional and two-dimensional polyacrylamide gels after immunoprecipitation with the bean antiserum or antisera raised against pea and parsley phenylalanine ammonia-lyase preparations and immune blotting. SDS/polyacrylamide gels and SDS/polyacrylamide gel electrophoresis followed by immune blotting, indicated that the Mr of newly synthesized (in vivo and in vitro) bean phenylalanine ammonia-lyase subunits is 77000; a 70000-Mr form is readily generated as a partial degradation product during purification. Immunoprecipitates of bean phenylalanine ammonia-lyase synthesized both in vivo and in vitro showed the presence of multiple subunit types of identical Mr but differing in pI. Furthermore, treatment of bean cultures with Colletotrichum elicitor resulted in a 10-fold increase in phenylalanine ammonia-lyase extractable activity within 8 h, and chromatofocussing analysis indicated that this was associated with differential increased appearance of the high-pI, low-Km forms as compared to the two higher Km forms. This differential induction was further confirmed by immune blotting of crude extracts subjected to isoelectric focussing.


Assuntos
Amônia-Liases/biossíntese , Fabaceae/enzimologia , Fenilalanina Amônia-Liase/biossíntese , Plantas Medicinais , Fenômenos Químicos , Química , Indução Enzimática/efeitos dos fármacos , Imunoquímica , Focalização Isoelétrica , Cinética , Fungos Mitospóricos/fisiologia , Peso Molecular , Fragmentos de Peptídeos/análise , Fenilalanina Amônia-Liase/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA