Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(8)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38471172

RESUMO

Objective.To improve hyperthermia in clinical practice, pre-clinical hyperthermia research is essential to investigate hyperthermia effects and assess novel treatment strategies. Translating pre-clinical hyperthermia findings into clinically viable protocols requires laboratory animal treatment techniques similar to clinical hyperthermia techniques. The ALBA micro8 electromagnetic heating system (Med-logix SRL, Rome, Italy) has recently been developed to provide the targeted locoregional tumour heating currently lacking for pre-clinical research. This study evaluates the heat focusing properties of this device and its ability to induce robust locoregional tumour heating under realistic physiological conditions using simulations.Approach.Simulations were performed using the Plan2Heat treatment planning package (Amsterdam UMC, the Netherlands). First, the specific absorption rate (SAR) focus was characterised using a homogeneous phantom. Hereafter, a digital mouse model was used for the characterisation of heating robustness in a mouse. Device settings were optimised for treatment of a pancreas tumour and tested for varying circumstances. The impact of uncertainties in tissue property and perfusion values was evaluated using polynomial chaos expansion. Treatment quality and robustness were evaluated based on SAR and temperature distributions.Main results.The SAR distributions within the phantom are well-focused and can be adjusted to target any specific location. The focus size (full-width half-maximum) is a spheroid with diameters 9 mm (radially) and 20 mm (axially). The mouse model simulations show strong robustness against respiratory motion and intestine and stomach filling (∆T90≤0.14°C).Mouse positioning errors in the cranial-caudal direction lead to∆T90≤0.23°C. Uncertainties in tissue property and perfusion values were found to impact the treatment plan up to 0.56 °C (SD), with a variation onT90of 0.32 °C (1 SD).Significance.Our work shows that the pre-clinical phased-array system can provide adequate and robust locoregional heating of deep-seated target regions in mice. Using our software, robust treatment plans can be generated for pre-clinical hyperthermia research.


Assuntos
Hipertermia Induzida , Neoplasias , Animais , Camundongos , Calefação , Neoplasias/terapia , Hipertermia Induzida/métodos , Temperatura Alta , Software
2.
J Clin Oncol ; 42(2): 140-145, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37922442

RESUMO

Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.Whether adjuvant hyperthermic intraperitoneal chemotherapy (HIPEC) might prevent peritoneal metastases after curative surgery for high-risk colon cancer is an ongoing debate. This study aimed to determine 5-year oncologic outcomes of the randomized multicenter COLOPEC trial, which included patients with clinical or pathologic T4N0-2M0 or perforated colon cancer and randomly assigned (1:1) to either adjuvant systemic chemotherapy and HIPEC (n = 100) or adjuvant systemic chemotherapy alone (n = 102). HIPEC was performed using a one-time administration of oxaliplatin (460 mg/m2, 30 minutes, 42°C, concurrent fluorouracil/leucovorin intravenously), either simultaneously (9%) or within 5-8 weeks (91%) after primary tumor resection. Outcomes were analyzed according to the intention-to-treat principle. Long-term data were available of all 202 patients included in the COLOPEC trial, with a median follow-up of 59 months (IQR, 54.5-64.5). No significant difference was found in 5-year overall survival rate between patients assigned to adjuvant HIPEC followed by systemic chemotherapy or only adjuvant systemic chemotherapy (69.6% v 70.9%, log-rank; P = .692). Five-year peritoneal metastases rates were 63.9% and 63.2% (P = .907) and 5-year disease-free survival was 55.7% and 52.3% (log-rank; P = .875), respectively. No differences in quality-of-life outcomes were found. Our findings implicate that adjuvant HIPEC should still be performed in trial setting only.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Hipertermia Induzida , Neoplasias Peritoneais , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/secundário , Hipertermia Induzida/métodos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Quimioterapia Adjuvante/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Combinada , Procedimentos Cirúrgicos de Citorredução
3.
Int J Radiat Oncol Biol Phys ; 118(3): 817-828, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820768

RESUMO

PURPOSE: Hyperthermia is a potent sensitizer of radiation therapy that improves both tumor control and survival in women with locally advanced cervical cancer (LACC). The optimal sequence and interval between hyperthermia and radiation therapy are still under debate. METHODS AND MATERIALS: We investigated the interval and sequence in vitro in cervical cancer cell lines, patient-derived organoids, and SiHa cervical cancer hind leg xenografts in athymic nude mice and compared the results with retrospective results from 58 women with LACC treated with thermoradiotherapy. RESULTS: All 3 approaches confirmed that shortening the interval between hyperthermia and radiation therapy enhanced hyperthermic radiosensitization by 2 to 8 times more DNA double-strand breaks and apoptosis and 10 to 100 times lower cell survival, delayed tumor growth in mice, and increased the 5-year survival rate of women with LACC from 22% (interval ≥80 minutes) to 54% (interval <80 minutes). In vitro and in vivo results showed that the sequence of hyperthermia and radiation therapy did not affect the outcome. CONCLUSIONS: Shortening the interval between hyperthermia and radiation therapy significantly improves treatment outcomes. The sequence of hyperthermia and radiation therapy (before or after) does not seem to matter.


Assuntos
Hipertermia Induzida , Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia , Hipertermia Induzida/métodos , Camundongos Nus , Estudos Retrospectivos , Terapia Combinada
4.
Int J Hyperthermia ; 40(1): 2218627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455017

RESUMO

INTRODUCTION: Hyperthermic IntraPEritoneal Chemotherapy (HIPEC) aims to treat microscopic disease left after CytoReductive Surgery (CRS). Thermal enhancement depends on the temperatures achieved. Since the location of microscopic disease is unknown, a homogeneous treatment is required to completely eradicate the disease while limiting side effects. To ensure homogeneous delivery, treatment planning software has been developed. This study compares simulation results with clinical data and evaluates the impact of nine treatment strategies on thermal and drug distributions. METHODS: For comparison with clinical data, three treatment strategies were simulated with different flow rates (1600-1800mL/min) and inflow temperatures (41.6-43.6 °C). Six additional treatment strategies were simulated, varying the number of inflow catheters, flow direction, and using step-up and step-down heating strategies. Thermal homogeneity and the risk of thermal injury were evaluated. RESULTS: Simulated temperature distributions, core body temperatures, and systemic chemotherapeutic concentrations compared well with literature values. Treatment strategy was found to have a strong influence on the distributions. Additional inflow catheters could improve thermal distributions, provided flow rates are kept sufficiently high (>500 mL/min) for each catheter. High flow rates (1800 mL/min) combined with high inflow temperatures (43.6 °C) could lead to thermal damage, with CEM4310 values of up to 27 min. Step-up and step-down heating strategies allow for high temperatures with reduced risk of thermal damage. CONCLUSION: The planning software provides valuable insight into the effects of different treatment strategies on peritoneal distributions. These strategies are designed to provide homogeneous treatment delivery while limiting thermal injury to normal tissue, thereby optimizing the effectiveness of HIPEC.


Assuntos
Hipertermia Induzida , Neoplasias Peritoneais , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Terapia Combinada , Hipertermia Induzida/métodos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/cirurgia , Quimioterapia do Câncer por Perfusão Regional/métodos , Procedimentos Cirúrgicos de Citorredução/métodos
5.
Comput Methods Programs Biomed ; 240: 107675, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37339535

RESUMO

INTRODUCTION: Hyperthermia treatment planning (HTP) tools can guide treatment delivery, particularly with locoregional radiative phased array systems. Uncertainties in tissue and perfusion property values presently lead to quantitative inaccuracy of HTP, leading to sub-optimal treatment. Assessment of these uncertainties would allow for better judgement of the reliability of treatment plans and improve their value for treatment guidance. However, systematically investigating the impact of all uncertainties on treatment plans is a complex, high-dimensional problem and too computationally expensive for traditional Monte Carlo approaches. This study aims to systematically quantify the treatment-plan impact of tissue property uncertainties by investigating their individual contribution to, and combined impact on predicted temperature distributions. METHODS: A novel Polynomial Chaos Expansion (PCE)-based HTP uncertainty quantification was developed and applied for locoregional hyperthermia of modelled tumours in the pancreatic head, prostate, rectum, and cervix. Patient models were based on the Duke and Ella digital human models. Using Plan2Heat, treatment plans were created to optimise tumour temperature (represented by T90) for treatment using the Alba4D system. For all 25-34 modelled tissues, the impact of tissue property uncertainties was analysed individually i.e., electrical and thermal conductivity, permittivity, density, specific heat capacity and perfusion. Next, combined analyses were performed on the top 30 uncertainties with the largest impact. RESULTS: Uncertainties in thermal conductivity and heat capacity were found to have negligible impact on the predicted temperature ( < 1 × 10-10 °C), density and permittivity uncertainties had a small impact (< 0.3 °C). Uncertainties in electrical conductivity and perfusion can lead to large variations in predicted temperature. However, variations in muscle properties result in the largest impact at locations that could limit treatment quality, with a standard deviation up to almost 6 °C (pancreas) and 3.5 °C (prostate) for perfusion and electrical conductivity, respectively. The combined influence of all significant uncertainties leads to large variations with a standard deviation up to 9.0, 3.6, 3.7 and 4.1 °C for the pancreatic, prostate, rectal and cervical cases, respectively. CONCLUSION: Uncertainties in tissue and perfusion property values can have a large impact on predicted temperatures from hyperthermia treatment planning. PCE-based analysis helps to identify all major uncertainties, their impact and judge the reliability of treatment plans.


Assuntos
Hipertermia Induzida , Neoplasias , Masculino , Feminino , Humanos , Hipertermia Induzida/métodos , Incerteza , Reprodutibilidade dos Testes , Perfusão
6.
Int J Hyperthermia ; 40(1): 2157498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755433

RESUMO

PURPOSE: In nonmuscle invasive bladder cancer (NMIBC) patients who fail standard intravesical treatment and are unfit or unwilling to undergo a radical cystectomy, radiofrequency (RF)-induced hyperthermia combined with intravesical chemotherapy (RF-CHT) has shown promising results. We studied whether higher thermal dose improves clinical NMIBC outcome. METHODS AND MATERIALS: The cohort comprised 108 patients who started with RF-CHT between November 2013 and December 2019. Patients received intravesical mitomycin-C or epirubicin. Bladder hyperthermia was accomplished with an intravesical 915 MHz RF device guided by intravesical thermometry. We assessed the association between thermal dose parameters (including median temperature and Cumulative Equivalent Minutes of T50 at 43 °C [CEM43T50]) and complete response (CR) at six months for patients with (concomitant) carcinoma in situ (CIS), and recurrence-free survival (RFS) for patients with papillary disease. RESULTS: Median temperature and CEM43T50 per treatment were 40.9 (IQR 40.8-41.1) °C and 3.1 (IQR 0.9-2.4) minutes, respectively. Analyses showed no association between any thermal dose parameter and CR or RFS (p > 0.05). Less bladder spasms during treatment sessions was associated with increased median temperature and CEM43T50 (adjusted OR 0.01 and 0.34, both p < 0.001). CONCLUSIONS: No significant association between thermal dose and NMIBC outcome was found. Possibly thermal dose effect in patients of the current cohort exceeds a certain threshold value. On the other hand, occurrence of bladder spasms had a thermal dose limiting effect. We advise to treat patients with temperatures >40.5 °C for at least 45 min while respecting individual tolerability, including occurrence of bladder spasms.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária , Humanos , Hipertermia Induzida/métodos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Mitomicina/uso terapêutico , Epirubicina/uso terapêutico , Terapia Combinada , Invasividade Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico
7.
Int J Radiat Oncol Biol Phys ; 115(4): 994-1003, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36288756

RESUMO

PURPOSE: The radiosensitization effect of hyperthermia can be considered and quantified as an enhanced equivalent radiation dose (EQDRT), that is, the dose needed to achieve the same effect without hyperthermia. EQDRT can be predicted using an extended linear quadratic model, with temperature-dependent parameters. Clinical data show that both the achieved temperature and time interval between radiation therapy and hyperthermia correlate with clinical outcome, but their effect on expected EQDRT is unknown and was therefore evaluated in this study. METHODS AND MATERIALS: Biological modeling was performed using our in-house developed software (X-Term), considering a 23- × 2-Gy external beam radiation scheme, as applied for patients with locally advanced cervical cancer. First, the EQDRT was calculated for homogeneous temperature levels, evaluating time intervals between 0 and 4 hours. Next, realistic heterogeneous hyperthermia treatment plans were combined with radiation therapy plans and the EQDRT was calculated for 10 patients. Furthermore, the effect of achieving 0.5°C to 1°C lower or higher temperatures was evaluated. RESULTS: EQDRT increases substantially with both increasing temperature and decreasing time interval. The effect of the time interval is most pronounced at higher temperatures (>41°C). At a typical hyperthermic temperature level of 41.5°C, an enhancement of ∼10 Gy can be realized with a 0-hour time interval, which is decreased to only ∼4 Gy enhancement with a 4-hour time interval. Most enhancement is already lost after 1 hour. Evaluation in patients predicted an average additional EQDRT (D95%) of 2.2 and 6.3 Gy for 4- and 0-hour time intervals, respectively. The effect of 0.5°C to 1°C lower or higher temperatures is most pronounced at high temperature levels and short time intervals. The additional EQDRT (D95%) ranged between 1.5 and 3.3 Gy and between 4.5 and 8.5 Gy for 4- and 0-hour time intervals, respectively. CONCLUSIONS: Biological modeling provides relevant insight into the relationship between treatment parameters and expected EQDRT. Both high temperatures and short time intervals are essential to maximize EQDRT.


Assuntos
Hipertermia Induzida , Neoplasias do Colo do Útero , Feminino , Humanos , Temperatura , Temperatura Alta , Hipertermia Induzida/métodos , Neoplasias do Colo do Útero/radioterapia , Doses de Radiação , Terapia Combinada
8.
Int J Hyperthermia ; 39(1): 265-277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35109742

RESUMO

BACKGROUND: Hyperthermia treatment planning is increasingly used in clinical applications and recommended in quality assurance guidelines. Assistance in phase-amplitude steering during treatment requires dedicated software for on-line visualization of SAR/temperature distributions and fast re-optimization in response to hot spots. As such software tools are not yet commercially available, we developed Adapt2Heat for on-line adaptive hyperthermia treatment planning and illustrate possible application by different relevant real patient examples. METHODS: Adapt2Heat was developed as a separate module of the treatment planning software Plan2Heat. Adapt2Heat runs on a Linux operating system and was developed in C++, using the open source Qt, Qwt and VTK libraries. A graphical user interface allows interactive and flexible on-line use of hyperthermia treatment planning. Predicted SAR/temperature distributions and statistics for selected phase-amplitude settings can be visualized instantly and settings can be re-optimized manually or automatically in response to hot spots. RESULTS: Pretreatment planning E-Field, SAR and temperature calculations are performed with Plan2Heat and imported in Adapt2Heat. Examples show that Adapt2Heat can be helpful in assisting with phase-amplitude steering, e.g., by suppressing indicated hot spots. The effects of phase-amplitude adjustments on the tumor and potential hot spot locations are comprehensively visualized, allowing intuitive and flexible assistance by treatment planning during locoregional hyperthermia treatments. CONCLUSION: Adapt2Heat provides an intuitive and flexible treatment planning tool for on-line treatment planning-assisted hyperthermia. Extensive features for visualization and (re-)optimization during treatment allow practical use in many locoregional hyperthermia applications. This type of tools are indispensable for enhancing the quality of hyperthermia treatment delivery.


Assuntos
Hipertermia Induzida , Terapia Assistida por Computador , Humanos , Hipertermia , Planejamento de Assistência ao Paciente , Temperatura
9.
Int J Gynecol Cancer ; 32(3): 288-296, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35046082

RESUMO

Radiotherapy with cisplatin (chemoradiation) is the standard treatment for women with locally advanced cervical cancer. Radiotherapy with deep hyperthermia (thermoradiation) is a well established alternative, but is rarely offered as an alternative to chemoradiation, particularly for patients in whom cisplatin is contraindicated. The scope of this review is to provide an overview of the biological rationale of hyperthermia treatment delivery, including patient workflow, and the clinical effectiveness of hyperthermia as a radiosensitizer in the treatment of cervical cancer. Hyperthermia is especially effective in hypoxic and nutrient deprived areas of the tumor where radiotherapy is less effective. Its radiosensitizing effectiveness depends on the temperature level, duration of treatment, and the time interval between radiotherapy and hyperthermia. High quality hyperthermia treatment requires an experienced team, adequate online adaptive treatment planning, and is preferably performed using a phased array radiative locoregional hyperthermia device to achieve the optimal thermal dose effect. Hyperthermia is well tolerated and generally leads to only mild toxicity, such as patient discomfort. Patients in whom cisplatin is contraindicated should therefore be referred to a hyperthermia center for thermoradiation.


Assuntos
Hipertermia Induzida , Neoplasias do Colo do Útero , Quimiorradioterapia , Cisplatino/uso terapêutico , Terapia Combinada , Feminino , Humanos , Neoplasias do Colo do Útero/patologia
10.
Int J Hyperthermia ; 38(1): 229-240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33602033

RESUMO

PURPOSE: In pancreatic cancer treatment, hyperthermia can be added to increase efficacy of chemo- and/or radiotherapy. Gas in stomach, intestines and colon is often in close proximity to the target volume. We investigated the impact of variations in gastrointestinal gas (GG) on temperature distributions during simulated hyperthermia treatment (HT). METHODS: We used sets of one CT and eight cone-beam CT (CBCT) scans obtained prior to/during fractionated image-guided radiotherapy in four pancreatic cancer patients. In Plan2Heat, we simulated locoregional heating by an ALBA-4D phased array radiofrequency system and calculated temperature distributions for (i) the segmented CT (sCT), (ii) sCT with GG replaced by muscle (sCT0), (iii) sCT0 with eight different GG distributions as visible on CBCT inserted (sCTCBCT). We calculated cumulative temperature-volume histograms for the clinical target volume (CTV) for all ten temperature distributions for each patient and investigated the relationship between GG volume and change in ΔT50 (temperature increase at 50% of CTV volume). We determined location and volume of normal tissue receiving a high thermal dose. RESULTS: GG volume on CBCT varied greatly (9-991 cm3). ΔT50 increased for increasing GG volume; maximum ΔT50 difference per patient was 0.4-0.6 °C. The risk for GG-associated treatment-limiting hot spots appeared low. Normal tissue high-temperature regions mostly occurred anteriorly; their volume and maximum temperature showed moderate positive correlations with GG volume, while fat-muscle interfaces were associated with higher risks for hot spots. CONCLUSIONS: Considerable changes in volume and position of gastrointestinal gas can occur and are associated with clinically relevant tumor temperature differences.


Assuntos
Hipertermia Induzida , Neoplasias Pancreáticas , Tomografia Computadorizada de Feixe Cônico , Humanos , Hipertermia , Dosagem Radioterapêutica , Temperatura
11.
Int J Hyperthermia ; 38(1): 38-54, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33487083

RESUMO

BACKGROUND: Hyperthermic intraperitoneal chemotherapy (HIPEC) is administered to treat residual microscopic disease after cytoreductive surgery (CRS). During HIPEC, fluid (41-43 °C) is administered and drained through a limited number of catheters, risking thermal and drug heterogeneities within the abdominal cavity that might reduce effectiveness. Treatment planning software provides a unique tool for optimizing treatment delivery. This study aimed to investigate the influence of treatment-specific parameters on the thermal and drug homogeneity in the peritoneal cavity in a computed tomography based rat model. METHOD: We developed computational fluid dynamics (CFD) software simulating the dynamic flow, temperature and drug distribution during oxaliplatin based HIPEC. The influence of location and number of catheters, flow alternations and flow rates on peritoneal temperature and drug distribution were determined. The software was validated using data from experimental rat HIPEC studies. RESULTS: The predicted core temperature and systemic oxaliplatin concentration were comparable to the values found in literature. Adequate placement of catheters, additional inflow catheters and higher flow rates reduced intraperitoneal temperature spatial variation by -1.4 °C, -2.3 °C and -1.2 °C, respectively. Flow alternations resulted in higher temperatures (up to +1.5 °C) over the peritoneal surface. Higher flow rates also reduced the spatial variation of chemotherapy concentration over the peritoneal surface resulting in a more homogeneous effective treatment dose. CONCLUSION: The presented treatment planning software provides unique insights in the dynamics during HIPEC, which enables optimization of treatment-specific parameters and provides an excellent basis for HIPEC treatment planning in human applications.


Assuntos
Hipertermia Induzida , Quimioterapia Intraperitoneal Hipertérmica , Animais , Terapia Combinada , Procedimentos Cirúrgicos de Citorredução , Oxaliplatina , Peritônio , Ratos , Software
12.
Sensors (Basel) ; 20(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142821

RESUMO

Electric permeabilization of cell membranes is the main mechanism of irreversible electroporation (IRE), an ablation technique for treatment of unresectable cancers, but the pulses also induce a significant temperature increase in the treated volume. To investigate the therapeutically thermal contribution, a preclinical setup is required to apply IRE at desired temperatures while maintaining stable temperatures. This study's aim was to develop and test an electroporation device capable of maintaining a pre-specified stable and spatially homogeneous temperatures and electric field in a tumor cell suspension for several clinical-IRE-settings. A hydraulically controllable heat exchange electroporation device (HyCHEED) was developed and validated at 37 °C and 46 °C. Through plate electrodes, HyCHEED achieved both a homogeneous electric field and homogenous-stable temperatures; IRE heat was removed through hydraulic cooling. IRE was applied to 300 µL of pancreatic carcinoma cell suspension (Mia PaCa-2), after which cell viability and specific conductivity were determined. HyCHEED maintained stable temperatures within ±1.5 °C with respect to the target temperature for multiple IRE-settings at the selected temperature levels. An increase of cell death and specific conductivity, including post-treatment, was found to depend on electric-field strength and temperature. HyCHEED is capable of maintaining stable temperatures during IRE-experiments. This provides an excellent basis to assess the contribution of thermal effects to IRE and other bio-electromagnetic techniques.

13.
Cells ; 9(8)2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722384

RESUMO

Cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment with curative intent for peritoneal metastasis of colorectal cancer (CRC). Currently, there is no standardized HIPEC protocol: choice of drug, perfusate temperature, and duration of treatment vary per institute. We investigated the temperature-dependent effectiveness of drugs often used in HIPEC. METHODS: The effect of temperature on drug uptake, DNA damage, apoptosis, cell cycle distribution, and cell growth were assessed using the temperature-dependent IC50 and Thermal Enhancement Ratio (TER) values of the chemotherapeutic drugs cisplatin, oxaliplatin, carboplatin, mitomycin-C (MMC), and 5-fluorouracil (5-FU) on 2D and 3D CRC cell cultures at clinically relevant hyperthermic conditions (38-43 °C/60 min). RESULTS: Hyperthermia alone decreased cell viability and clonogenicity of all cell lines. Treatment with platinum-based drugs and MMC resulted in G2-arrest. Platinum-based drugs display a temperature-dependent synergy with heat, with increased drug uptake, DNA damage, and apoptosis at elevated temperatures. Apoptotic levels increased after treatment with MMC or 5-FU, without a synergy with heat. CONCLUSION: Our in vitro results demonstrate that a 60-min exposure of platinum-based drugs and MMC are effective in treating 2D and 3D CRC cell cultures, where platinum-based drugs require hyperthermia (>41 °C) to augment effectivity, suggesting that they are, in principle, suitable for HIPEC.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Antimetabólitos Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/cirurgia , Procedimentos Cirúrgicos de Citorredução/métodos , Fluoruracila/uso terapêutico , Hipertermia Induzida/métodos , Quimioterapia Intraperitoneal Hipertérmica/métodos , Mitomicina/uso terapêutico , Antibióticos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Humanos , Mitomicina/farmacologia
14.
Int J Hyperthermia ; 37(1): 711-741, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579419

RESUMO

The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.


Assuntos
Hipertermia Induzida , Neoplasias , Calefação , Temperatura Alta , Humanos , Neoplasias/terapia , Tecnologia
15.
Lancet Gastroenterol Hepatol ; 4(10): 761-770, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31371228

RESUMO

BACKGROUND: Nearly a quarter of patients with locally advanced (T4 stage) or perforated colon cancer are at risk of developing peritoneal metastases, often without curative treatment options. We aimed to determine the efficacy of adjuvant hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with locally advanced colon cancer. METHODS: This multicentre, open-label trial was done in nine hospitals that specialised in HIPEC in the Netherlands. Patients with clinical or pathological T4N0-2M0-stage tumours or perforated colon cancer were randomly assigned (1:1), with a web-based randomisation application, before resection of the primary tumour, to adjuvant HIPEC followed by routine adjuvant systemic chemotherapy (experimental group) or to adjuvant systemic chemotherapy alone (control group). Patients were stratified by tumour characteristic (T4 or perforation), age (<65 years or ≥65 years), and surgical approach of the primary tumour resection (laparoscopic or open). Key eligibility criteria included age between 18 and 75 years, adequate clinical condition for HIPEC, and intention to start adjuvant systemic chemotherapy. Patients with metastatic disease were ineligible. Adjuvant HIPEC consisted of fluorouracil (400 mg/m2) and leucovorin (20 mg/m2) delivered intravenously followed by intraperitoneal delivery of oxaliplatin (460 mg/m2) for 30 min at 42°C, delivered simultaneously or within 5-8 weeks after primary tumour resection. In all patients without evidence of recurrent disease at 18 months, a diagnostic laparoscopy was done. The primary endpoint was peritoneal metastasis free-survival at 18 months, measured in the intention-to-treat population, with the Kaplan-Meier method. Adverse events were assessed in all patients who received assigned treatment. This study is registered with ClinicalTrials.gov, number NCT02231086. FINDINGS: Between April 1, 2015, and Feb 20, 2017, 204 patients were randomly assigned to treatment (102 in each group). In the HIPEC group, two patients withdrew consent after randomisation. In this group, 19 (19%) of 100 patients were diagnosed with peritoneal metastases: nine (47%) during surgical exploration preceding intentional adjuvant HIPEC, eight (42%) during routine follow-up, and two (11%) during diagnostic laparoscopy at 18-months. In the control group, 23 (23%) of 102 patients were diagnosed with peritoneal metastases, of whom seven (30%) were diagnosed by laparoscopy at 18-months and 16 during regular follow-up (therefore making them ineligible for diagnostic laparoscopy). In the intention-to-treat analysis (n=202), there was no difference in peritoneal-free survival at 18-months (80·9% [95% CI 73·3-88·5] for the experimental group vs 76·2% [68·0-84·4] for the control group, log-rank one-sided p=0·28). 12 (14%) of 87 patients who received adjuvant HIPEC developed postoperative complications and one (1%) encapsulating peritoneal sclerosis. INTERPRETATION: In patients with T4 or perforated colon cancer, treatment with adjuvant HIPEC with oxaliplatin did not improve peritoneal metastasis-free survival at 18 months. Routine use of adjuvant HIPEC is not advocated on the basis of this trial. FUNDING: Organization for Health Research and Development and the Dutch Cancer Society.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Hipertermia Induzida/métodos , Adenocarcinoma/patologia , Adenocarcinoma/secundário , Adenocarcinoma/cirurgia , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia Adjuvante/métodos , Colectomia/efeitos adversos , Colectomia/métodos , Neoplasias do Colo/patologia , Neoplasias do Colo/cirurgia , Feminino , Humanos , Complicações Intraoperatórias , Estimativa de Kaplan-Meier , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Oxaliplatina/administração & dosagem , Neoplasias Peritoneais/secundário , Complicações Pós-Operatórias
16.
Int J Oncol ; 54(1): 209-218, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387837

RESUMO

Recurrent pediatric tumors pose a challenge since treatment options may be limited, particularly after previous irradiation. Positive results have been reported for chemotherapy and hyperthermia, but the combination of re­irradiation and hyperthermia has not been investigated thus far, although it is a proven treatment strategy in adults. The theoretical feasibility of re­irradiation plus hyperthermia was investigated for infield recurrent pediatric sarcoma in the pelvic region and the extremities. A total of 46 recurrent pediatric sarcoma cases diagnosed at the Academic Medical Center (Amsterdam, The Netherlands) between 2002 and 2017 were evaluated. Patients not previously irradiated, outfield recurrences and locations other than the pelvis and extremities were excluded, ultimately yielding four eligible patients: Two with sarcomas in the pelvis and two in an extremity. Re­irradiation and hyperthermia treatment plans were simulated for 23x2 Gy treatment schedules and weekly hyperthermia. The radiosensitizing effect of hyperthermia was quantified using biological modelling with a temperature­dependent change in the parameters of the linear­quadratic model. The possible effectiveness of re­irradiation plus hyperthermia was estimated by calculating the equivalent radiotherapy dose distribution. Treatment planning revealed that tumors located in the pelvis and the extremities can be effectively heated in children. Equivalent dose distributions indicated that hyperthermic radiosensitization can be quantified as a target­selective additional D95% of typically 10 Gy, thereby delivering a possibly curative dose of 54 Gy, without substantially increasing the equivalent dose to the organs at risk. Therefore, re­irradiation plus hyperthermia is a theoretically feasible and possibly effective treatment option for recurrent pediatric sarcoma in the pelvic region and the extremities, and its clinical feasibility is worthy of evaluation.


Assuntos
Hipertermia Induzida/métodos , Recidiva Local de Neoplasia/terapia , Reirradiação/métodos , Sarcoma/terapia , Adolescente , Pré-Escolar , Terapia Combinada , Intervalo Livre de Doença , Fracionamento da Dose de Radiação , Estudos de Viabilidade , Feminino , Humanos , Masculino , Países Baixos , Planejamento da Radioterapia Assistida por Computador , Resultado do Tratamento
17.
Int J Mol Sci ; 19(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115874

RESUMO

Hyperthermia (HT) and molecular targeting agents can be used to enhance the effect of radiotherapy (RT). The purpose of this paper is to evaluate radiation sensitization by HT and different molecular targeting agents (Poly [ADP-ribose] polymerase 1 inhibitor, PARP1-i; DNA-dependent protein kinase catalytic subunit inhibitor, DNA-PKcs-i and Heat Shock Protein 90 inhibitor, HSP90-i) in cervical cancer cell lines. Survival curves of SiHa and HeLa cells, concerning the combined effects of radiation with hyperthermia and PARP1-i, DNA-PKcs-i or HSP90-i, were analyzed using the linear-quadratic model: S(D)/S(0) = exp - (αD + ßD²). The values of the linear-quadratic (LQ) parameters α and ß, determine the effectiveness at low and high doses, respectively. The effects of these sensitizing agents on the LQ parameters are compared to evaluate dose-dependent differences in radio enhancement. Combination of radiation with hyperthermia, PARP1-i and DNA-PKcs-i significantly increased the value of the linear parameter α. Both α and ß were significantly increased for HSP90-i combined with hyperthermia in HeLa cells, though not in SiHa cells. The Homologous Recombination pathway is inhibited by hyperthermia. When hyperthermia is combined with DNA-PKcs-i and PARP1-i, the Non-Homologous End Joining or Alternative Non-Homologous End Joining pathway is also inhibited, leading to a more potent radio enhancement. The observed increments of the α value imply that significant radio enhancement is obtained at clinically-used radiotherapy doses. Furthermore, the sensitizing effects of hyperthermia can be even further enhanced when combined with other molecular targeting agents.


Assuntos
Hipertermia Induzida , Terapia de Alvo Molecular , Radiação Ionizante , Neoplasias do Colo do Útero/terapia , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Feminino , Células HeLa , Humanos , Resultado do Tratamento
18.
Int J Hyperthermia ; 34(7): 969-979, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29168401

RESUMO

OBJECTIVE: In pancreatic cancer, which is therapy resistant due to its hypoxic microenvironment, hyperthermia may enhance the effect of radio(chemo)therapy. The aim of this systematic review is to investigate the validity of the hypothesis that hyperthermia added to radiotherapy and/or chemotherapy improves treatment outcome for pancreatic cancer patients. METHODS AND MATERIALS: We searched MEDLINE and Embase, supplemented by handsearching, for clinical studies involving hyperthermia in pancreatic cancer patients. The quality of studies was evaluated using the Oxford Centre for Evidence-Based Medicine levels of evidence. Primary outcome was treatment efficacy; we calculated overall response rate and the weighted estimate of the population median overall survival (mp) and compared these between hyperthermia and control cohorts. RESULTS: Overall, 14 studies were included, with 395 patients with locally advanced and/or metastatic pancreatic cancer of whom 248 received hyperthermia. Patients were treated with regional (n = 189), intraoperative (n = 39) or whole-body hyperthermia (n = 20), combined with chemotherapy, radiotherapy or both. Quality of the studies was low, with level of evidence 3 (five studies) and 4. The six studies including a control group showed a longer mp in the hyperthermia groups than in the control groups (11.7 vs. 5.6 months). Overall response rate, reported in three studies with a control group, was also better for the hyperthermia groups (43.9% vs. 35.3%). CONCLUSIONS: Hyperthermia, when added to chemotherapy and/or radiotherapy, may positively affect treatment outcome for patients with pancreatic cancer. However, the quality of the reviewed studies was limited and future randomised controlled trials are needed to establish efficacy.


Assuntos
Hipertermia Induzida/métodos , Neoplasias Pancreáticas/terapia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Prognóstico
19.
Int J Hyperthermia ; 34(1): 39-48, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28540821

RESUMO

Poly(ADP-ribose)polymerase1 (PARP1) is an important enzyme in regulating DNA replication. Inhibition of PARP1 can lead to collapsed DNA forks which subsequently causes genomic instability, making DNA more susceptible in developing fatal DNA double strand breaks. PARP1-induced DNA damage is generally repaired by homologous recombination (HR), in which BRCA2 proteins are essential. Therefore, BRCA2-deficient tumour cells are susceptible to treatment with PARP1-inhibitors (PARP1-i). Recently, BRCA2 was shown to be down-regulated by hyperthermia (HT) temporarily, and this consequently inactivated HR for several hours. In this study, we investigated whether HT exclusively interferes with HR by analysing thermal radiosensitisation of BRCA2-proficient and deficient cells. After elucidating the equitoxicity of PARP1-i on BRCA2-proficient and deficient cells, we studied the cell survival, apoptosis, DNA damage (γ-H2AX foci and comet assay) and cell cycle distribution after different treatments. PARP1-i sensitivity strongly depends on the BRCA2 status. BRCA2-proficient and deficient cells are radiosensitised by HT, indicating that HT does not exclusively act by inhibition of HR. In all cell lines, the addition of HT to radiotherapy and PARP1-i resulted in the lowest cell survival, the highest levels of DNA damage and apoptotic levels compared to duo-modality treatments. Concluding, HT not only inhibits HR, but also has the capability of radiosensitising BRCA2-deficient cells. Thus, in case of BRCA2-mutation carriers, combining HT with PARP1-i may boost the treatment efficacy. This combination therapy would be effective for all patients with PARP1-i regardless of their BRCA status.


Assuntos
Proteína BRCA2/deficiência , Inibidores Enzimáticos/farmacologia , Hipertermia Induzida/métodos , Neoplasias Mamárias Experimentais/terapia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Apoptose/efeitos da radiação , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos dos fármacos , Feminino , Histonas/genética , Histonas/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/efeitos da radiação , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/radioterapia , Camundongos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Tolerância a Radiação/efeitos dos fármacos
20.
Int J Radiat Oncol Biol Phys ; 99(4): 1039-1047, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28870786

RESUMO

BACKGROUND: Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to improve the heating quality. The aim of this study was to evaluate the clinical benefit of online treatment planning during treatment of pelvic tumors heated with the AMC-8 locoregional hyperthermia system. METHODS: For online adaptive hyperthermia treatment planning, a graphical user interface was developed. Electric fields were calculated in a preprocessing step using our in-house-developed finite-difference-based treatment planning system. This allows instant calculation of the temperature distribution for user-selected phase-amplitude settings during treatment and projection onto the patient's computed tomographic scan for online visualization. Online treatment planning was used for 14 treatment sessions in 8 patients to reduce the patients' reports of hot spots while maintaining the same level of tumor heating. The predicted decrease in hot spot temperature should be at least 0.5°C, and the tumor temperature should decrease less than 0.2°C. These predictions were compared with clinical data: patient feedback about the hot spot and temperature measurements in the tumor region. RESULTS: In total, 17 hot spot reports occurred during the 14 sessions, and the alternative settings predicted the hot spot temperature to decrease by at least 0.5°C, which was confirmed by the disappearance of all 17 hot spot reports. At the same time, the average tumor temperature was predicted to change on average -0.01°C (range, -0.19°C to 0.34°C). The measured tumor temperature change was on average only -0.02°C (range, -0.26°C to 0.31°C). In only 2 cases the temperature decrease was slightly larger than 0.2°C, but at most it was 0.26°C. CONCLUSIONS: Online application of hyperthermia treatment planning is reliable and very useful to reduce hot spots without affecting tumor temperatures.


Assuntos
Temperatura Alta , Hipertermia Induzida/métodos , Melanoma/terapia , Neoplasias Pélvicas/terapia , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia Assistida por Computador/métodos , Neoplasias da Bexiga Urinária/terapia , Neoplasias do Colo do Útero/terapia , Feminino , Humanos , Hipertermia Induzida/efeitos adversos , Hipertermia Induzida/instrumentação , Melanoma/diagnóstico por imagem , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Neoplasias Pélvicas/diagnóstico por imagem , Neoplasias Pélvicas/tratamento farmacológico , Neoplasias Pélvicas/radioterapia , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/radioterapia , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA