Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
ACS Infect Dis ; 4(4): 431-444, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29436819

RESUMO

Natural products are well known for their biological relevance, high degree of three-dimensionality, and access to areas of largely unexplored chemical space. To shape our understanding of the interaction between natural products and protein targets in the postgenomic era, we have used native mass spectrometry to investigate 62 potential protein targets for malaria using a natural-product-based fragment library. We reveal here 96 low-molecular-weight natural products identified as binding partners of 32 of the putative malarial targets. Seventy-nine (79) fragments have direct growth inhibition on Plasmodium falciparum at concentrations that are promising for the development of fragment hits against these protein targets. This adds a fragment library to the published HTS active libraries in the public domain.


Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Espectrometria de Massas/métodos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Ligação Proteica , Proteínas de Protozoários/metabolismo
2.
PLoS Pathog ; 12(7): e1005763, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27467575

RESUMO

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.


Assuntos
Antimaláricos/uso terapêutico , Conjuntos de Dados como Assunto , Descoberta de Drogas/métodos , Malária/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Bibliotecas de Moléculas Pequenas
3.
J Biomol Screen ; 21(2): 194-200, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26773071

RESUMO

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS or ESI-FTMS) was used to screen 192 natural product extracts and a 659-member natural product-based fragment library for bindings to a potential malaria drug target, Plasmodium falciparum Rab11a (PfRab11a, PF13_0119). One natural product extract and 11 fragments showed binding activity. A new natural product, arborside E, was identified from the active extract of Psydrax montigena as a weak binder. Its binding activity and inhibitory activity against PfRab11a were confirmed by ESI-FTMS titration experiments and an orthogonal enzyme assay.


Assuntos
Produtos Biológicos/química , Extratos Vegetais/química , Plantas/química , Espectrometria de Massas por Ionização por Electrospray/métodos
4.
Infect Dis Poverty ; 4: 40, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26341081

RESUMO

BACKGROUND: Schistosomiasis, a parasitic disease also known as bilharzia and snail fever, is caused by different species of flatworms, such as Schistosoma mansoni (S. mansoni). Thioredoxin glutathione reductase (TGR) from S. mansoni (SmTGR) is a well-characterized drug target for schistosomiasis, yet no anti-SmTGR compounds have reached clinical trials, suggesting that therapeutic development against schistosomiasis might benefit from additional scaffolds targeting this enzyme. METHODS: A high-throughput screening (HTS) assay in vitro against SmTGR was developed and applied to a diverse compound library. SmTGR activity was quantified with ThioGlo®, a reagent that fluoresces upon binding to the free sulfhydryl groups of the reaction product GSH (reduced glutathione). RESULTS: We implemented an HTS effort against 59,360 synthetic compounds. In the primary screening, initial hits (928 or 1.56 %) showing greater than 90 % inhibition on SmTGR activity at a final concentration of 10 µM for each compound were identified. Further tests were carried out to confirm the effects of these hits and to explore the concentration-dependent response characteristics. As a result, 74 of them (0.12 %) representing 17 chemical scaffolds were confirmed and showed a great concentration-dependent inhibitory trend against SmTGR, including structures previously shown to be lethal to schistosomal growth. Of these, two scaffolds displayed a limited structure-activity relationship. When tested in cultured larvae, 39 compounds had cidal activity in 48 h, and five of them killed larvae completely at 3.125 µM. Of these, three compounds also killed adult worms ex vivo at concentrations between 5 µM and 10 µM. CONCLUSION: These confirmed hits may serve as starting points for the development of novel therapeutics to combat schistosomiasis.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Esquistossomicidas/farmacologia , Animais , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/normas , Humanos , Testes de Sensibilidade Parasitária , Reprodutibilidade dos Testes , Esquistossomose/tratamento farmacológico , Bibliotecas de Moléculas Pequenas
5.
Mol Biochem Parasitol ; 175(1): 21-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20813141

RESUMO

The efficacy of most marketed antimalarial drugs has been compromised by evolution of parasite resistance, underscoring an urgent need to find new drugs with new mechanisms of action. We have taken a high-throughput approach toward identifying novel antimalarial chemical inhibitors of prioritized drug targets for Plasmodium falciparum, excluding targets which are inhibited by currently used drugs. A screen of commercially available libraries identified 5655 low molecular weight compounds that inhibit growth of P. falciparum cultures with EC(50) values below 1.25µM. These compounds were then tested in 384- or 1536-well biochemical assays for activity against nine Plasmodium enzymes: adenylosuccinate synthetase (AdSS), choline kinase (CK), deoxyuridine triphosphate nucleotidohydrolase (dUTPase), glutamate dehydrogenase (GDH), guanylate kinase (GK), N-myristoyltransferase (NMT), orotidine 5'-monophosphate decarboxylase (OMPDC), farnesyl pyrophosphate synthase (FPPS) and S-adenosylhomocysteine hydrolase (SAHH). These enzymes were selected using TDRtargets.org, and are believed to have excellent potential as drug targets based on criteria such as their likely essentiality, druggability, and amenability to high-throughput biochemical screening. Six of these targets were inhibited by one or more of the antimalarial scaffolds and may have potential use in drug development, further target validation studies and exploration of P. falciparum biochemistry and biology.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Enzimas/metabolismo , Concentração Inibidora 50 , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/antagonistas & inibidores
6.
Nature ; 465(7296): 311-5, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20485428

RESUMO

Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library-many of which showed potent in vitro activity against drug-resistant P. falciparum strains-and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.


Assuntos
Antimaláricos/análise , Antimaláricos/farmacologia , Descoberta de Drogas , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Animais , Antimaláricos/isolamento & purificação , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos/efeitos dos fármacos , Quimioterapia Combinada , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos , Fenótipo , Filogenia , Plasmodium falciparum/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
7.
Am J Physiol Endocrinol Metab ; 282(1): E67-73, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11739085

RESUMO

Why does the onset of glycolytic flux in muscle lag the start of exercise? We tested the hypothesis that both elevated metabolite levels and muscle activity are required for flux to begin. Glycolytic flux was determined from changes in muscle pH, phosphocreatine concentration, and P(i) concentration ([P(i)]) as measured by 31P magnetic resonance spectroscopy. Eight subjects performed rapid ankle dorsiflexions to approximately 45% of maximal voluntary contraction force under ischemia at a rate of 1 contraction/s. Subjects completed two bouts of exercise separated by 1 min of ischemic rest. Glycolytic flux was activated by 27 s in the first bout, ceased during the ischemic rest period, and was activated more quickly in the second bout. Because the onset in both bouts occurred at approximately the same [P(i)], ADP concentration, and AMP concentration, the activation of glycolysis appears to be related to the elevation of these metabolite concentrations. However, because no glycolytic flux occurred at rest, even when metabolite levels were high, both muscle activity and elevated metabolites are needed to turn on this pathway. We conclude that the delayed onset of glycolytic flux during exercise reflects the time needed to raise metabolites to flux-activating levels.


Assuntos
Glicólise/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Trifosfato de Adenosina/metabolismo , Adulto , Exercício Físico/fisiologia , Glicogênio/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fosfocreatina/metabolismo , Fósforo/metabolismo
8.
Am J Physiol Endocrinol Metab ; 282(1): E74-9, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11739086

RESUMO

Glycolytic flux in muscle declines rapidly after exercise stops, indicating that muscle activation is a key controller of glycolysis. The mechanism underlying this control could be 1) a Ca(2+)-mediated modulation of glycogenolysis, which supplies substrate (hexose phosphates, HP) to the glycolytic pathway, or 2) a direct effect on glycolytic enzymes. To distinguish between these possibilities, HP levels were raised by voluntary 1-Hz exercise, and glycolytic flux was measured after the exercise ceased. Glycolytic H(+) and ATP production were quantified from changes in muscle pH, phosphocreatine concentration, and P(i) concentration as measured by 31P magnetic resonance spectroscopy. Substrate (HP) and metabolite (P(i), ADP, and AMP) levels remained high when exercise stopped because of the occlusion of blood flow with a pressure cuff. Glycolytic flux declined to basal levels within approximately 20 s of the end of exercise despite elevated levels of HP and metabolites. Therefore, this flux does not subside because of insufficient HP substrate; rather, glycolysis is controlled independently of glycogenolytic HP production. We conclude that the inactivation of glycolysis after exercise reflects the cessation of contractile activity and is mediated within the glycolytic pathway rather than via the control of glycogen breakdown.


Assuntos
Glicólise/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Trifosfato de Adenosina/metabolismo , Adulto , Exercício Físico/fisiologia , Hexoses/metabolismo , Humanos , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Fosfatos/metabolismo , Fosfocreatina , Fósforo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA