Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Hum Reprod ; 25(5): 257-264, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824928

RESUMO

Ulipristal acetate (UPA) is a selective progesterone receptor modulator used for emergency contraception that has proven to be highly effective in preventing pregnancy when taken up to 120 h after unprotected sexual intercourse. Even though it may act mainly by delaying or inhibiting ovulation, additional effects of UPA on post-fertilization events cannot be excluded. Therefore, the aim of this study was to determine whether a single post-ovulatory dose of UPA could prevent pregnancy using the mouse as a pre-clinical model. Mated females received a single dose of UPA (40 mg/kg) on Day E1.5 or E2.5 (E0.5: copulatory plug detection) and post-fertilization events were evaluated. Our studies revealed that UPA administration produced a significant decrease in the number of conceptuses compared to control. Moreover, UPA-treated females exhibited a lower number of early implantation sites on Day E5.5, despite normal in vivo embryo development and transport to the uterus at E3.5. Administration of UPA produced histological and functional alterations in the uterine horns, i.e., a dyssynchronous growth between endometrial glands and stroma, with non-physiological combination of both fractions compared to controls, and a completely impaired ability to respond to an artificial decidualization stimulus. Altogether, our results show that the administration of a single post-ovulatory dose of UPA impairs mouse pregnancy probably due to an effect on embryo-uterine interaction, supporting additional effects of the drug on post-fertilization events. Although these studies cannot be performed with human samples, our results with the mouse model provide new insights into the mechanism of action of UPA as an emergency contraception method.


Assuntos
Contraceptivos Hormonais/farmacologia , Implantação do Embrião/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fertilização/fisiologia , Norpregnadienos/farmacologia , Ovário/efeitos dos fármacos , Animais , Anticoncepção Pós-Coito/métodos , Copulação/fisiologia , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Feminino , Humanos , Masculino , Camundongos , Ovário/fisiologia , Ovulação/fisiologia , Gravidez
2.
Int J Dev Biol ; 52(5-6): 737-42, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18649285

RESUMO

Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. CRISP1 (cysteine-rich secretory protein 1) is an epididymal protein thought to participate in gamete fusion through its binding to egg-complementary sites. Structure-function studies using recombinant fragments of CRISP1 as well as synthetic peptides reveal that its egg-binding ability resides in a 12 amino acid region corresponding to an evolutionary conserved motif of the CRISP family, named Signature 2 (S2). Further experiments analyzing both the ability of other CRISP proteins to bind to the rat egg and the amino acid sequence of their S2 regions show that the amino acid sequence of the S2 is needed for CRISP1 to interact with the egg. CRISP1 appears to be involved in the first step of sperm binding to the zona pellucida, identifying a novel role for this protein in fertilization. The observation that sperm testicular CRISP2 is also able to bind to the egg surface suggests a role for this protein in gamete fusion. Subsequent experiments confirmed the participation of CRISP2 in this step of fertilization and revealed that CRISP1 and CRISP2 interact with common egg surface binding sites. Together, these results suggest a functional cooperation between CRISP1 and CRISP2 to ensure the success of fertilization. These observations contribute to a better understanding of the molecular mechanisms underlying mammalian fertilization.


Assuntos
Cisteína/química , Glicoproteínas/fisiologia , Glicoproteínas de Membrana/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Animais , Moléculas de Adesão Celular , Feminino , Cobaias , Humanos , Masculino , Proteínas de Membrana , Camundongos , Modelos Biológicos , Ligação Proteica , Ratos , Espermatozoides/fisiologia
3.
Biol Reprod ; 67(4): 1225-31, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12297540

RESUMO

Rat sperm epididymal glycoprotein DE belongs to the cysteine-rich secretory protein (CRISP) family and participates in sperm-egg fusion through its binding to complementary sites on the egg surface. To investigate the molecular mechanisms underlying the role of DE in gamete fusion, in the present work we expressed DE in a prokaryotic system, and examined the relevance of carbohydrates and disulfide bonds for the biological activity of the protein. Immunofluorescence and sperm-egg fusion assays carried out in the presence of recombinant DE (recDE) revealed that this protein exhibits the ability to bind to the DE-egg binding sites and to inhibit gamete fusion, as does native DE (nDE). Comparison of the proteins indicated, however, that the inhibitory ability of recDE was significantly lower than that of nDE. This difference would not be due to the lack of carbohydrates in the bacterially expressed protein because enzymatically deglycosylated nDE was as able as the untreated protein to inhibit gamete fusion. To examine whether disulfide bridges are involved in DE activity, the presence of sulfhydryls in nDE and recDE was evaluated by the biotin-maleimide technique. Results indicated that, unlike nDE, in which all cysteines are involved in disulfide bonds, recDE contains free thiol groups. Subsequent experiments showed that reduction of nDE with dithiothreitol significantly decreased the ability of the protein to inhibit gamete fusion. Together, these results indicate that whereas carbohydrates do not have a role in DE-mediated gamete fusion, disulfide bridges are required for full biological activity of the protein. To our knowledge, this is the first study reporting the relevance of structural components for the function of a CRISP member.


Assuntos
Epididimo/química , Expressão Gênica , Glicoproteínas/química , Glicoproteínas/fisiologia , Proteínas de Plasma Seminal/química , Proteínas de Plasma Seminal/fisiologia , Interações Espermatozoide-Óvulo , Relação Estrutura-Atividade , Animais , Biotina , Western Blotting , Carboidratos/análise , Carboidratos/química , Dissulfetos/análise , Dissulfetos/química , Ditiotreitol/farmacologia , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Técnica Indireta de Fluorescência para Anticorpo , Glicoproteínas/genética , Glicosilação , Humanos , Masculino , Maleimidas , Peso Molecular , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Proteínas de Plasma Seminal/genética , Interações Espermatozoide-Óvulo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA