Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Phytomedicine ; 128: 155509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452403

RESUMO

BACKGROUND: Chronic intestinal inflammatory diseases play a crucial role in the onset of colorectal cancer (CRC). Effectively impeding the progression of colitis-associated colorectal cancer (CAC) can be instrumental in hindering CRC development. Wu-Mei-Pill (WMP), a formulation comprising various herbal extracts, is clinically employed for CAC treatment, yet the underlying mechanism of WMP's efficacy in CAC remains unclear. Our study firstly demonstrated the effects and mechanisms of WMP on transcriptional and metabolic levels based on integrated transcriptomics and untargeted metabolomics and relative experimental validations. MATERIALS AND METHODS: A CAC mouse model was established through a single injection of azoxymethane (AOM) followed by intermittent dextran sodium sulfate (DSS) intervention, with subsequent WMP administration. Initially, the therapeutic impact of WMP on the CAC model was assessed by observing survival rate, body weight change, colon length, tumor number, tumor load, and pathological changes in the colon tissue of CAC mice post-WMP intervention. Subsequently, differential genes and metabolites in the colorectal tissue of CAC mice following WMP intervention were identified through transcriptomics and non-targeted metabolomics. Finally, the influence of WMP on the peroxisome proliferator activated receptor (PPAR) pathway, Wnt pathway, and CC motif chemokine ligand 3 (CCL3)/ CC motif chemokine receptor 1 (CCR1) axis in CAC mice was verified through western blot, immunofluorescence, and ELISA based on the results of transcriptomics and non-targeted metabolomics. RESULTS: WMP intervention enhanced survival, alleviated body weight loss, shortened colon length, tumor occurrence, and pathological changes in the colorectal tissue of CAC mice, such as glandular damage, tumourigenesis, and inflammatory cell infiltration. Transcriptomic and non-targeted metabolomic results revealed that WMP intervention up-regulated the expression of key regulatory mechanisms of fatty acid oxidation PPAR pathway-related genes (Pparg, Ppara, Cpt1a, and Acadm) and metabolites (L-carnitine and L-palmitoylcarnitine). Additionally, it down-regulated Wnt pathway-related genes (Wnt3, Axin2, Tcf7, Mmp7, Lgr5, Wnt5a, Fzd6, Wnt7b, Lef1, and Fzd10 etc.) and pro-inflammatory related genes (Il1b, Il6, Il17a, Ccl3, and Ccr1 etc.). Experimental validation demonstrated that WMP up-regulated PPAR pathway-related proteins [PPARγ, PPARα, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase medium chain (ACADM)] in the colorectal tissue of CAC mice. It also down-regulated Wnt pathway-related proteins [ß-catenin, T-cell factor (TCF), lymphoid enhancer-binding factor (LEF), and matrix metallopeptidase 7 (MMP7)], inhibited the nuclear translocation of the key transcription factor ß-catenin in the Wnt pathway, and suppressed epithelial-to-mesenchymal transition (EMT) activation induced by the Wnt pathway (up-regulated E-cadherin and down-regulated Vimentin). Furthermore, WMP intervention reduced pro-inflammatory factors [interleukin (IL)-6, IL-1ß, and IL-17A] and decreased CCL3/CCR1 axis factors, including CCL3 protein levels and diminished F4/80+CCR1+ positive expressed cells. CONCLUSION: WMP significantly inhibits CAC tumorigenesis by up-regulating PPARα-mediated fatty acid oxidation, inhibiting the Wnt signaling pathway-mediated EMT, and suppressing CCL3/CCR1-mediated inflammatory responses.


Assuntos
Azoximetano , Neoplasias Associadas a Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Metabolômica , Transcriptoma , Animais , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Masculino , Neoplasias Colorretais , Camundongos Endogâmicos C57BL , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Colite/induzido quimicamente
2.
J Cell Mol Med ; 28(7): e18194, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506086

RESUMO

Non-alcoholic steatohepatitis (NASH) is a severe form of fatty liver disease. If not treated, it can lead to liver damage, cirrhosis and even liver cancer. However, advances in treatment have remained relatively slow, and there is thus an urgent need to develop appropriate treatments. Hedan tablet (HDP) is used to treat metabolic syndrome. However, scientific understanding of the therapeutic effect of HDP on NASH remains limited. We used HDP to treat a methionine/choline-deficient diet-induced model of NASH in rats to elucidate the therapeutic effects of HDP on liver injury. In addition, we used untargeted metabolomics to investigate the effects of HDP on metabolites in liver of NASH rats, and further validated its effects on inflammation and lipid metabolism following screening for potential target pathways. HDP had considerable therapeutic, anti-oxidant, and anti-inflammatory effects on NASH. HDP could also alter the hepatic metabolites changed by NASH. Moreover, HDP considerable moderated NF-κB and lipid metabolism-related pathways. The present study found that HDP had remarkable therapeutic effects in NASH rats. The therapeutic efficacy of HDP in NASH mainly associated with regulation of NF-κB and lipid metabolism-related pathways via arachidonic acid metabolism, glycine-serine-threonine metabolism, as well as steroid hormone biosynthesis.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , NF-kappa B/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Cell Commun Signal ; 22(1): 99, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317142

RESUMO

The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.


Assuntos
Interleucina-17 , Linfócitos T Reguladores , Humanos , Interleucina-10 , Células Th17 , Inflamação
4.
Phytomedicine ; 124: 155285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185065

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), carries a high risk of cirrhosis and hepatocellular carcinoma. With the increasing incidence of NASH, the accompanying medical burden is also increasing rapidly, so the development of safe and reliable drugs is urgent. Formononetin (FMNT) has a variety of pharmacological effects such as antioxidant and anti-inflammation, and plays a major role in regulating lipid metabolism, reducing hepatic steatosis and so on, but the mechanism for alleviating NASH is unclear. MATERIALS AND METHODS: We firstly established a mouse model on NASH through methionine-choline deficient (MCD) diet to investigate the improvement of FMNT as well as the effects of fatty acid ß oxidation and SIRT1/PGC-1α/PPARα pathway. Then, we explored the mechanisms of FMNT regulation in SIRT1/PGC-1α/PPARα pathway and fatty acid ß oxidation based on genes silencing of SIRT1 and PGC1A. In addition, SIRT1 agonist (SRT1720) and inhibitor (EX527) were used to verify the mechanism of FMNT on improvement of NASH. RESULTS: Our study found that after FMNT intervention, activities of ALT and AST and TG level were improved, and liver function and hepatocellular steatosis on NASH mice were significantly improved. The detection of ß oxidation related indicators showed that FMNT intervention up-regulated FAO capacity, level of carnitine, and the levels of ACADM and CPT1A. The detection of factors related to the SIRT1/PGC-1α/PPARα pathway showed that FMNT activated and promoted the expression of SIRT1/PGC-1α/PPARα pathway, including up-regulating the expression level of SIRT1, improving the activity of SIRT1, promoting the deacetylation of PGC-1α, and promoting the transcriptional activity of PPARα. Furthermore, after genes silencing of SIRT1 and PGC1A, we found that FMNT intervention could not alleviate NASH, including improvement of hepatocellular steatosis, enhancement of ß oxidation, and regulation of SIRT1/PGC-1α/PPARα pathway. Afterwards, we used SRT1720 as a positive control, and the results indicated that FMNT and SRT1720 intervention had no significant difference on improving hepatocellular steatosis and promoting fatty acid ß oxidation. Besides, we found that when EX527 intervention inhibited expression of SIRT1, the improvement of FMNT on NASH was weakened or even disappeared. CONCLUSION: In summary, our results demonstrated that FMNT intervention activated SIRT1/PGC-1α/PPARα pathway to promote fatty acid ß oxidation and regulate lipid metabolism in liver, ultimately improved hepatocellular steatosis on NASH mice.


Assuntos
Isoflavonas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Sirtuína 1/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL
5.
J Diabetes Res ; 2023: 9164883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840577

RESUMO

Diabetic nephropathy (DN) is a metabolic disease wherein chronic hyperglycemia triggers various renal cell dysfunctions, eventually leading to progressive kidney failure. Rosa laevigata Michx. is a traditional Chinese herbal medicine. Many studies have confirmed its antioxidative, anti-inflammatory, and renoprotective effects. However, the effects and mechanisms of Rosa laevigata Michx. polysaccharide (RLP) in DN remain unclear. In this study, a DN mouse model was established to investigate the therapeutic effect of RLP on DN mice. Then, nontargeted metabolomics was used to analyze the potential mechanism of RLP in the treatment of DN. Finally, the effects of RLP on ferroptosis and the PI3K/AKT pathway were investigated. The results demonstrated that RLP effectively alleviated renal injury and reduced inflammation and oxidative stress in the kidney. In addition, nontargeted metabolomic analysis indicated that RLP could modulate riboflavin metabolism and tryptophan metabolism in DN mice. Notably, ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney were also ameliorated following RLP treatment. In conclusion, this study confirmed that RLP had a significant therapeutic effect on DN mice. Furthermore, RLP treatment modulated tryptophan metabolism and inhibited ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Rosa , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rosa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Triptofano/farmacologia , Triptofano/uso terapêutico , Transdução de Sinais , Apoptose
6.
Phytomedicine ; 118: 154937, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393831

RESUMO

BACKGROUND: Polygala japonica Houtt. (PJ) has been demonstrated with several biological potentials such as lipid-lowering and anti-inflammatory effects. However, the effects and mechanisms of PJ on nonalcoholic steatohepatitis (NASH) remain unclear. PURPOSE: The aim of this study was to evaluate the effects of PJ on NASH and illustrate the mechanism based on modulating gut microbiota and host metabolism. MATERIALS AND METHODS: NASH mouse model was induced using methionine and choline deficient (MCD) diet and orally treated with PJ. The therapeutic, anti-inflammatory, and anti-oxidative effects of PJ on mice with NASH were firstly assessed. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of PJ on the metabolites in liver and feces were explored by untargeted metabolomics. RESULTS: The results indicated that PJ could improve hepatic steatosis, liver injury, inflammatory response, and oxidative stress in NASH mice. PJ treatment also affected the diversity of gut microbiota and changed the relative abundances of Faecalibaculum. Lactobacillus, Muribaculaceae, Dubosiella, Akkermansia, Lachnospiraceae_NK4A136_group, and Turicibacter in NASH mice. In addition, PJ treatment modulated 59 metabolites both in liver and feces. Metabolites involved in histidine, and tryptophan metabolism pathways were identified as the key metabolites according to the correlation analysis between differential gut microbiota and metabolites. CONCLUSION: Our study demonstrated the therapeutic, anti-inflammatory and anti-oxidative potentials of PJ on NASH. The mechanisms of PJ treatment were related to the improvement of gut microbiota dysbiosis and the regulation of histidine and tryptophan metabolism.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Polygala , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polygala/genética , RNA Ribossômico 16S , Histidina/metabolismo , Histidina/farmacologia , Histidina/uso terapêutico , Triptofano/metabolismo , Triptofano/farmacologia , Triptofano/uso terapêutico , Fígado , Fezes , Camundongos Endogâmicos C57BL
7.
Artigo em Inglês | MEDLINE | ID: mdl-37159591

RESUMO

Liang-Ge (LG) decoction could ameliorate coagulation dysfunction in septic model rats. However, the mechanism of LG in treating sepsis still needs to be clarified. Our current study established a septic rat model to evaluate the effect of LG on coagulation dysfunction in septic rats first. Second, we investigated the effect of LG on NET formation in septic rats. Finally, NETs and PAD4 inhibitors were further used to clarify if LG could improve the mechanism of sepsis coagulation dysfunction by inhibiting NET formation. Our findings indicated that treatment with LG improved the survival rate, reduced inflammatory factor levels, enhanced hepatic and renal function, and reduced pathological changes in rats with sepsis. LG could also alleviate coagulation dysfunction in septic model rats. Besides, LG treatment reduced NETs formation and decreased PAD4 expression in neutrophiles. In addition, LG treatment showed a similar result in comparison to the treatment with either NET inhibitors or PAD4 inhibitors alone. In conclusion, this study confirmed that LG has therapeutic effects on septic rats. Furthermore, the improvement of coagulation dysfunction in septic rats by LG was achieved through inhibiting PAD4-mediated NET formation.

8.
Phytomedicine ; 113: 154733, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36870307

RESUMO

BACKGROUND: Jiang-Tang-San-Huang (JTSH) pill, a traditional Chinese medicine (TCM) prescription, has long been applied to clinically treat type 2 diabetes mellitus (T2DM), while the underlying antidiabetic mechanism remains unclarified. Currently, it is believed that the interaction between intestinal microbiota and bile acids (BAs) metabolism mediates host metabolism and promotes T2DM. PURPOSE: To elucidate the underlying mechanisms of JTSH for treating T2DM with animal models. METHODS: In this study, male SD rats received high-fat diet (HFD) and streptozotocin (STZ) injection to induce T2DM and were treated with different dosages (0.27, 0.54 and 1.08 g/kg) of JTSH pill for 4 weeks; metformin was given as a positive control. Alterations of gut microbiota and BA profiles in the distal ileum were assessed by 16S ribosomal RNA gene sequencing and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), respectively. Additionally, we conducted quantitative Real Time-PCR and western blotting to determine the mRNA and protein expression levels of intestinal farnesoid X receptor (FXR), fibroblast growth factor 15 (FGF15), Takeda G-protein-coupled receptor 5 (TGR5) and glucagon-like peptide 1 (GLP-1) as well as hepatic cytochrome P450, family 7, subfamily a, poly-peptide 1 (CYP7A1) and cytochrome P450, family 8, subfamily b, poly-peptide 1 (CYP8B1), which are involved in BAs metabolism and enterohepatic circulation. RESULTS: Here, the results revealed that JTSH treatment significantly ameliorated hyperglycaemia, insulin resistance (IR), hyperlipidaemia, and pathological changes in the pancreas, liver, kidney and intestine and reduced the serum levels of pro-inflammatory cytokines in T2DM model rats. 16S rRNA sequencing and UPLC-MS/MS showed that JTSH treatment could modulate gut microbiota dysbiosis by preferentially increasing bacteria (e.g., Bacteroides, Lactobacillus, Bifidobacterium) with bile-salt hydrolase (BSH) activity, which might in turn lead to the accumulation of ileal unconjugated BAs (e.g., CDCA, DCA) and further upregulate the intestinal FXR/FGF15 and TGR5/GLP-1 signaling pathways. CONCLUSION: The study demonstrated that JTSH treatment could alleviate T2DM by modulating the interaction between gut microbiota and BAs metabolism. These findings suggest that JTSH pill may serve as a promising oral therapeutic agent for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cromatografia Líquida , RNA Ribossômico 16S , Ácidos e Sais Biliares/metabolismo , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Fígado/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-36846048

RESUMO

Qing-Fei-Shen-Shi decoction (QFSS) consists of Prunus armeniaca L., Gypsum Fibrosum, Smilax glabra Roxb., Coix lacryma-jobi L., Benincasa hispida (Thunb.) Cogn., Plantago asiatica L., Pyrrosia lingua (Thunb.) Farw., Houttuynia cordata Thunb., Fritillaria thunbergii Miq., Cicadae Periostracum, and Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle. QFSS shows significant clinical efficacy in the treatment of asthma. However, the specific mechanism of QFSS on asthma remains unclear. Recently, multiomics techniques are widely used in elucidating the mechanisms of Chinese herbal formulas. The use of multiomics techniques can better illuminate the multicomponents and multitargets of Chinese herbal formulas. In this study, ovalbumin (OVA) was first employed to induce an asthmatic mouse model, followed by a gavage of QFSS. First, we evaluated the therapeutic effects of QFSS on the asthmatic model mice. Second, we investigated the mechanism of QFSS in treating asthma by using an integrated 16S rRNA sequencing technology and untargeted metabolomics. Our results showed that QFSS treatment ameliorated asthma in mice. In addition, QFSS treatment affected the relative abundances of gut microbiota including Lactobacillus, Dubosiella, Lachnospiraceae_NK4A136_group, and Helicobacter. Untargeted metabolomics results showed that QFSS treatment regulated the metabolites such as 2-(acetylamino)-3-[4-(acetylamino) phenyl] acrylic acid, D-raffinose, LysoPC (15 : 1), methyl 10-undecenoate, PE (18 : 1/20 : 4), and D-glucose6-phosphate. These metabolites are associated with arginine and proline metabolism, arginine biosynthesis, pyrimidine metabolism, and glycerophospholipid metabolism. Correlation analysis indicated that arginine and proline metabolism and pyrimidine metabolism metabolic pathways were identified as the common metabolic pathways of 16s rRNA sequencing and untargeted metabolomics. In conclusion, our results showed that QFSS could ameliorate asthma in mice. The possible mechanism of QFSS on asthma may be associated with regulating the gut microbiota and arginine and proline metabolism and pyrimidine metabolism. Our study may be useful for researchers to study the integrative mechanisms of Chinese herbal formulas based on modulating gut microbiota and metabolism.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35399623

RESUMO

Many studies have found that the dysfunction in gut microbiota and the metabolic dysfunction can promote nonalcoholic fatty liver disease (NAFLD) development. Er-Chen decoction (EC) can be used in the treatment of NAFLD. However, the mechanism of this hepatoprotection is still unknown. In this study, we constructed a rat model with NAFLD fed with high-fat chow and administered EC treatment. The therapeutic effects of EC on NAFLD were evaluated by measuring transaminases, blood lipid levels, and pathological changes in the liver. In addition, we measured the effects of EC on liver inflammatory response and oxidative stress. The changes in gut microbiota after EC treatment were studied using 16S rRNA sequencing. Serum untargeted metabolomics analysis was also used to study the metabolic regulatory mechanisms of EC on NAFLD. The results showed that EC decreased the serum transaminases and lipid levels and improved the pathological changes in NAFLD rats. Furthermore, EC enhanced the activities of SOD and GSH-Px and decreased MDA level in the liver. EC treatment also decreased the gene and protein levels of IL-6, IL-1ß, and TNF-α in the liver and serum. The 16S rRNA sequencing and untargeted metabolomics indicated that EC treatment affected the gut microbiota and regulated serum metabolism. Correlation analysis showed that the effects of EC on taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways were associated with affecting in the abundance of Lactobacillus, Dubosiella, Lachnospiraceae, Desulfovibri, Romboutsia, Akkermansia, Intestinimonas, and Candidatus_saccharimonas in the gut. In conclusion, our study confirmed the protective effect of EC on NAFLD. EC could treat NAFLD by inhibiting oxidative stress, reducing inflammatory responses, and improving the dysbiosis of gut microbiota and the modulation of the taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways in serum.

11.
Front Pharmacol ; 13: 828920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222043

RESUMO

Twenty-Five Wei'er Tea Pills (TFP), a traditional Tibetan medicine, has shown to have a promising therapeutic effect in patients with Rheumatoid arthritis (RA), as well as being safe. Nonetheless, there have been limited pharmacological studies that have explored this therapeutic option. As gut microbiota has been proven to have a critical role in the pathogenesis of RA, this study aims to explore and reveal relevant ways by which TFP interacts with the chemical crosstalk between the gut microbiome and its host. 16S rRNA sequencing, combined with un-targeted metabolomics, were conducted on collagen-induced arthritis (CIA) rats. CIA model rats treated with TFP showed significant improvement in weight gain, pathological phenomena in joints, as well as decreased serum levels of TNF-α, IL-6 and increased level of IL-4 and IL-10. Significant dysfunction in the gut microbiome and alteration in serum metabolites were observed in CIA model rats, which were restored by TFP treatment. Coherence analysis indicated that TFP modulated the pathways of histidine metabolism, phenylalanine metabolism, alanine, aspartate, glutamate metabolism, amino sugar and nucleotide sugar metabolism owing to the abundances of Lactobacillus, Bacteroides, Prevotellaceae_UCG-001 and Christensenellaceae_R-7_group in the gut microflora. The corresponding metabolites involved L-histidine, histamine, phenylethylamine, asparagine, L-aspartic acid, D-fructose 1-phosphate, D-Mannose 6-phosphate, D-Glucose 6-phosphate, and Glucose 1-phosphate. In conclusion, this study reveals the ameliorative effects of TFP on RA through the chemical crosstalk that exists between the gut microbiota and its host, and also further enriches our understandings of the pathogenesis of RA.

12.
Front Pharmacol ; 12: 700498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220524

RESUMO

Combination therapy using Western and traditional Chinese medicines has shown notable effects on coronavirus disease 2019 (COVID-19). The He-Jie-Shen-Shi decoction (HJSS), composed of Bupleurum chinense DC., Scutellaria baicalensis Georgi, Pinellia ternata (Thunb.) Makino, Glycyrrhiza uralensis Fisch. ex DC., and nine other herbs, has been used to treat severe COVID-19 in clinical practice. The aim of this study was to compare the clinical efficacies of HJSS combination therapy and Western monotherapy against severe COVID-19 and to study the potential action mechanism of HJSS. From February 2020 to March 2020, 81 patients with severe COVID-19 in Wuhan Tongji Hospital were selected for retrospective cohort study. Network pharmacology was conducted to predict the possible mechanism of HJSS on COVID-19-related acute respiratory distress syndrome (ARDS). Targets of active components in HJSS were screened using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and PharmMapper databases. The targets of COVID-19 and ARDS were obtained from GeneCards and Online Mendelian Inheritance in Man databases. The key targets of HJSS in COVID-19 and ARDS were obtained based on the protein-protein interaction network (PPI). Kyoto Encyclopedia of Genes and Genomes analysis (KEGG) was conducted to predict the pathways related to the targets of HJSS in COVID-19 and ARDS. A "herb-ingredient-target-pathway" network was established using Cytoscape 3.2.7. Results showed that the duration of the negative conversion time of nucleic acid was shorter in patients who received HJSS combination therapy. HJSS combination therapy also relieved fever in patients with severe COVID-19. Network pharmacology analysis identified interleukin (IL) 6, tumor necrosis factor (TNF), vascular endothelial growth factor A (VEGFA), catalase (CAT), mitogen-activated protein kinase (MAPK) 1, tumor protein p53 (TP53), CC-chemokine ligand (CCL2), MAPK3, prostaglandin-endoperoxide synthase 2 (PTGS2), and IL1B as the key targets of HJSS in COVID-19-related ARDS. KEGG analysis suggested that HJSS improved COVID-19-related ARDS by regulating hypoxia-inducible factor (HIF)-1, NOD-like receptor, TNF, T cell receptor, sphingolipid, PI3K-Akt, toll-like receptor, VEGF, FoxO, and MAPK signaling pathways. In conclusion, HJSS can be used as an adjuvant therapy on severe COVID-19. The therapeutic mechanisms may be involved in inhibiting viral replication, inflammatory response, and oxidative stress and alleviating lung injury. Further studies are required to confirm its clinical efficacies and action mechanisms.

13.
Zhongguo Zhong Yao Za Zhi ; 46(8): 2104-2111, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33982526

RESUMO

The aim of this study was to elucidate the mechanism of nuciferine on alleviating obesity based on modulating gut microbiota, ameliorating chronic inflammation, and improving gut permeability. In this study, the obese model mice were induced by high-fat diet and then randomly divided into model group, and nuciferine group; some other mice of the same week age were fed with normal diet as normal group. In the modeling process, the mice were administered intragastrically(ig) for 12 weeks. In the course of both modeling and treatment, the body weight and food intake of mice in each group were measured weekly. After modeling and treatment, the Lee's index, weight percentage of inguinal subcutaneous fat, and the level of blood lipid in each group were measured. The pathological changes of adipocytes were observed by HE staining to evaluate the efficacy of nuciferine treatment in obese model mice. 16 S rRNA sequencing analysis was conducted to study the changes in diversity and abundance of gut microbiota after nuciferine treatment. Enzyme-linked immunosorbent assay(ELISA) and quantitative Real-time polymerase chain reaction(qPCR) were used to detect the levels of inflammatory factors interleukin-6(IL-6), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α) and the expression of related genes in adipose tissue of mice in each group, so as to evaluate the effect of nuciferine on chronic inflammation of mice in obese model group. qPCR was used to detect the expression of occludin and tight junction protein 1(ZO-1)gene in colon tissure, so as to evaluate the effect of nuciferine on intestinal permeability of mice in obese group. Nuciferine decreased the body weight of obese mice, Lee's index, weight percentage of inguinal subcutaneous fat(P<0.05), and reduced the volume of adipocytes, decreased the level of total cholesterol(TC), triglyceride(TG), and low density lipoprotein cholesterol(LDL-C)(P<0.05) in serum, improved dysbacteriosis, increased the relative abundance of Alloprevotella, Turicibacter, and Lactobacillus, lowered the relative abundance of Helicobac-ter, decreased the expression of inflammatory cytokines IL-6, IL-1ß, and TNF-α genes in adipose tissue(P<0.01), decreased the levels of inflammatory cytokines IL-6, IL-1ß, and TNF-α in serum(P<0.05), and increased the expression of occludin and ZO-1 genes related to tight junction in colon tissue(P<0.01). Nuciferine could treat obesity through modulating gut microbiota, decreasing gut permeability and ameliorating inflammation.


Assuntos
Microbioma Gastrointestinal , Animais , Aporfinas , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-33824675

RESUMO

BACKGROUND: Jian-Gan-Xiao-Zhi decoction (JGXZ), composed of Salvia miltiorrhiza Bunge, Panax notoginseng, Curcuma zedoaria, and other 9 types of herbs, has demonstrated beneficial effects on nonalcoholic fatty liver disease (NAFLD). However, the mechanisms behind JGXZ's impact on NAFLD remain unknown. METHODS: In this study, a NAFLD rat model induced by a high-fat diet (HFD) received oral treatment of JGXZ (8 or 16 g crude herb/kg) for 12 weeks. The therapeutic effects of JGXZ on NAFLD model rats were investigated through blood lipid levels and pathological liver changes. 16S rRNA analysis was used to study the changes in gut microbiota after JGXZ treatment. The expressions of occludin and tight junction protein 1 (ZO-1) in the colon were investigated using immunostaining to study the effects of JGXZ on gut permeability. The anti-inflammatory effects of JGXZ were also studied through measuring the levels of IL-1ß, IL-6, and TNF-α in the serum and liver. RESULTS: JGXZ treatment could decrease body weight and ameliorate dyslipidemia in NAFLD model rats. H&E and Oil Red O staining indicated that JGXZ reduced steatosis and infiltration of inflammatory cells in the liver. 16S rRNA analysis showed that JGXZ impacted the diversity of gut microbiota, decreasing the Firmicutes-to-Bacteroidetes ratio, and increasing the relative abundance of probiotics, such as Alloprevotella, Lactobacillus, and Turicibacter. Gut permeability evaluation found that the expressions of ZO-1 and occludin in the colon were increased after JGXZ treatment. Moreover, JGXZ treatment could decrease the levels of IL-1ß, IL-6, and TNF-α in the serum and liver. CONCLUSIONS: Our study illustrated that JGXZ could ameliorate NAFLD through modulating gut microbiota, decreasing gut permeability, and alleviating inflammatory response.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33144872

RESUMO

Kang-Xian (KX) pills have been clinically used for the treatment of chronic hepatic injury (CHI). However, the mechanisms of KX on CHI remain unknown. The aim of this study mainly focused on the anti-inflammatory effects of KX in a CHI mouse model based on modulating gut microbiota and gut permeability. We first established a CHI model using carbon tetrachloride (CCl4) and treated it with KX. The anti-inflammatory effects of KX on CHI model mice and the changes in gut permeability after KX treatment were also investigated. 16S rRNA analysis was used to study the changes of gut microbiota composition after KX treatment. In addition, gut microbiota was depleted using a combination of antibiotics in order to further confirm that KX could inhibit the inflammatory response and decrease gut permeability to treat CHI by modulating the gut microbiota. Results showed that KX treatment significantly improved liver function in CHI model mice. KX could also increase the levels of tight junction proteins in the colon and decrease the expression of proinflammatory cytokines in the liver. 16S rRNA analysis indicated that KX treatment affected the alpha and beta diversities in CHI model mice. Further analysis of 16S rRNA sequencing indicated that KX treatment increased the ratio of Firmicutes to Bacteroidetes at the phylum level. At the genus level, KX treatment increased the relative abundance of Lactobacillus, Bacteroides, and Akkermansia and decreased the relative abundance of Ralstonia, Alloprevotella, and Lachnoclostridium. However, KX could not alleviate CHI after depleting the gut microbiota. The effects of KX on gut permeability and inflammatory response in the liver were also decreased following the depletion of gut microbiota. In conclusion, our current study demonstrated that gut microbiota was significantly affected during CHI progression. KX could inhibit the inflammatory response and decrease the gut permeability in CHI model mice through modulating the gut microbiota.

16.
J Int Med Res ; 48(9): 300060520931288, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32993381

RESUMO

OBJECTIVE: To identify potentially effective bacterial components of gold juice, a traditional Chinese medicine treatment used for fecal microbiota transplantation. METHODS: Fecal samples were collected from five healthy children (two boys and three girls; mean age, 7.52 ± 2.31 years). The children had no history of antibiotic use or intestinal microecological preparation in the preceding 3 months. Fresh fecal samples were collected from children to prepare gold juice in mid-to-late November, in accordance with traditional Chinese medicine methods, then used within 7 days. Finally, 16S rDNA sequence analysis was used to identify potentially effective bacterial components of gold juice. QIIME software was used for comparisons of microbial species among gold juice, diluent, filtrate, and loess samples. RESULTS: Microflora of gold juice exhibited considerable changes following "ancient method" processing. Microbial components significantly differed between gold juice and filtrate samples. The gold juice analyzed in our study consisted of microbes that synthesize carbohydrates and amino acids by degrading substances, whereas the filtrate contained probiotic flora, Bacteroides, and Prevotella 9. CONCLUSIONS: This study of microbial components in gold juice and filtrate provided evidence regarding effective bacterial components in gold juice, which may aid in clinical decisions concerning fecal microbiota transplantation.


Assuntos
Microbioma Gastrointestinal , Ouro , Criança , Pré-Escolar , Transplante de Microbiota Fecal , Fezes , Feminino , Humanos , Masculino , RNA Ribossômico 16S/genética
17.
BMC Complement Altern Med ; 19(1): 118, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170978

RESUMO

BACKGROUND: Hirudin, an extract from Hirudo spp., is an anticoagulant used to treat a variety of renal diseases, including diabetic nephropathy (DN). Currently, hirudin has to be used at high dosages to treat DN because it poorly targets the kidneys, although at high dosages it can have severe side effects. Developing a targeted drug delivery system for hirudin, then, could boost its positive therapeutic effects while lowering the risk of side effects. Liposomes have been demonstrated to have significant renal targeting potential, but here we show that a hirudin-loaded liposome is an effective delivery method for patients with DN. METHOD: In this study, we prepared a hirudin/liposome complex and tested its efficacy by injecting it into a rat model. We then compared the renal accumulation of hirudin between complex-injected rat models and rat models that received injections of hirudin alone. We also investigated the mechanisms behind the complex's effects. RESULT: The hirudin/liposome complex increased the accumulation of hirudin in kidney tissues and relieved the renal injury in DN rat models. Moreover, the hirudin/liposome complex down-regulated the expression of TGF-ß1 and VEGF in the kidneys. CONCLUSION: We demonstrated that a hirudin/liposome complex can have a significant positive effect on DN. The mechanism may be that the complex inhibits the expression of VEGF and TGF-ß1.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Fibrinolíticos/administração & dosagem , Hirudinas/administração & dosagem , Animais , Glicemia , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/patologia , Avaliação Pré-Clínica de Medicamentos , Fibrinolíticos/farmacocinética , Hirudinas/farmacocinética , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Lipossomos , Masculino , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Front Pharmacol ; 9: 1110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323765

RESUMO

Tong-Xie-Yao-Fang (TXYF) has been widely used for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D) in traditional Chinese medicine. However, its mechanism of action in the treatment of IBS-D remains to be fully understood. Recent reports have shown that Clostridium species in the gut can induce 5-HT production in the colon, which then contributes to IBS-D. Due to the wide use of TXYF in the clinical treatment of IBS-D and the close relationship between gut microbiota and IBS-D, we hypothesize that TXYF treats IBS-D by modulating gut microbiota and regulating colonic 5-HT levels. In this study, variation analysis of 16S rRNA was conducted to evaluate changes in the distribution of gut microbiota in IBS-D model rats after TXYF treatment. Moreover, we investigated whether TXYF could affect colonic 5-HT levels in IBS-D model rats. We then performed fecal transplantation experiments to confirm the effects of TXYF on gut microbiota and 5-HT levels. We found that TXYF treatment can ameliorate IBS-D and regulate 5-HT levels in colon tissue homogenates. TXYF treatment also affected the diversity of gut microbiota and altered the relative abundance of Akkermansia and Clostridium sensu stricto 1 in gut flora populations. Finally, we showed that fecal transplantation from TXYF-treated rats could relieve IBS-D and regulate 5-HT levels in colon tissue homogenates. In conclusion, the present study demonstrates that TXYF treatment diminishes colonic 5-HT levels and alleviates the symptoms of IBS-D by favorably affecting microbiota levels in gut flora communities.

19.
J Pharmacol Sci ; 137(4): 324-332, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30150145

RESUMO

Glycyrrhiza Uralensis Polysaccharide (GCP), as a macromolecular polysaccharide extracted from the Traditional Chinese Medicine (TCM) - Licorice has been proved to inhibit tumor growth in vitro and in vivo; however, the specific anti-tumor mechanism of GCP needs to be further investigated. In this study, we explore the anti-tumor mechanism of GCP from the angle of gut microbiota. Colon carcinoma cells (CT-26) were used to set up a tumor-bearing mouse model. After 14 days of GCP treatment, the weights of tumors were significantly reduced. In addition, HE staining of tissue sections reflected that GCP could effectively inhibit tumor metastasis. 16SrRNA high-throughput sequencing of fecal samples showed a significant change between the model group and GCP group in the composition of gut microbiota. Subsequently, gut microbiota depletion and fecal transplantation experiments further confirmed the relationship between the anti-tumor effects of GCP and gut microbiota. Following depletion of gut microbiota, GCP cannot inhibit tumor growth. Fecal transplantation experiments found that transplanting the feces of GCP-treated mice, to a certain extent, could inhibit tumor growth and metastasis. These results indicate that Glycyrrhiza Polysaccharides exert anti-tumor effects by affecting gut microbiota composition.


Assuntos
Antineoplásicos Fitogênicos , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Glycyrrhiza uralensis/química , Fitoterapia , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Masculino , Camundongos Endogâmicos BALB C
20.
Cytotechnology ; 69(1): 19-29, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27990569

RESUMO

Human umbilical cord mesenchymal stem cells (hUMSCs) have been shown to have multiple differentiation potentials. However, a key problem is that only a small number of hUMSCs can migrate to damaged tissue after transplantation. According to "The Theory of Kidney Essence" in Traditional Chinese Medicine, some traditional Chinese medicines used for tonifying the kidneys can be applied in promoting the differentiation and migration of stem cells in vivo. Our previous study demonstrated that icariin (ICA) could up-regulate the pluripotent genes of hUMSCs in vitro and induce cell migration in mice in an acute kidney injury model in vivo. The aim of this study was to investigate the effects of ICA-induced hUMSCs in chronic liver injury (CLI) caused by carbon tetrachloride (CCl4). CLI was induced by intraperitoneal injection of CCl4. ICA-treated hUMSCs were transplanted via intra-venous injection. The animals were followed for survival, biochemistry analysis and pathology. The results show that ICA-treated hUMSCs accelerate the recovery of liver function in mice with CLI. In addition, ICA-treated hUMSCs increase the anti-oxidant activities in liver and prevent the progression to hepatic fibrosis. Moreover, ICA induces the migration of hUMSCs to the injured liver tissue. In conclusion, these data demonstrate that ICA-treated hUMSCs exhibit recovery and protective properties in the mice model of CCl4-induced CLI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA