Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(1): 203-212, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799395

RESUMO

Soil microorganisms play an important role in the biogeochemical cycles of terrestrial ecosystems. How-ever, it is still unclear how the amount and duration of nitrogen (N) addition affect soil microbial community structure and whether there is a correlation between the changes in microbial community structure and their nutrient limi-tation status. In this study, we conducted an N addition experiment in a subtropical Pinus taiwanensis forest to simulate N deposition with three treatments: control (CK, 0 kg N·hm-2·a-1), low N (LN, 40 kg N·hm-2·a-1), and high N (HN, 80 kg N·hm-2·a-1). Basic soil physicochemical properties, phospholipid fatty acids content, and carbon (C), N and phosphorus (P) acquisition enzyme activities were measured after one and three years of N addition. The relative nutrient limitation status of soil microorganisms was analyzed using ecological enzyme stoichiometry. The results showed that one-year N addition did not affect soil microbial community structure. Three-year LN treatment significantly increased the contents of Gram-positive bacteria (G+), Gram-negative bacteria (G-), actinomycetes (ACT), and total phospholipid fatty acids (TPLFA), whereas three-year HN treatment did not significantly affect soil microbial community, indicating that bacteria and ACT might be more sensitive to N addition. Nitrogen addition exacerbated soil C and P limitation. Phosphorus limitation was the optimal explanatory factor for the changes in soil microbial community structure. It suggested that P limitation induced by N addition might be more beneficial for the growth of certain oligotrophic bacteria (e.g. G+) and the microorganisms participating in the P cycling (e.g. ACT), with consequences on soil microbial community structure of subtropical Pinus taiwanensis forest.


Assuntos
Microbiota , Pinus , Fósforo , Nitrogênio/análise , Solo/química , Biomassa , Microbiologia do Solo , Florestas , Fosfolipídeos , Ácidos Graxos , Bactérias , Carbono , China
2.
Ying Yong Sheng Tai Xue Bao ; 32(2): 521-528, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33650361

RESUMO

The activity and stoichiometry of soil extracellular enzyme can provide a good indication for changes in soil nutrient availability and microbial demands for nutrients. However, it remains unclear how would nitrogen (N) deposition affect nutrient limitation of microbes in subtropical forest soils. We conducted a 5 years N addition experiment in a subtropical Phyllostachys pubescens forest. The soil nutrients and enzyme activities associated with carbon (C), N, and phosphorus (P) cycles were measured. We also examined the nutrient distribution of microorganisms using enzyme stoichiometry and vector analysis. The results showed that N addition significantly decreased the contents of soil soluble organic C and available P and increased that of available N. Furthermore, N addition significantly decreased ß-N-acetyl-glucosaminidase (NAG) activity and NAG/ microbial biomass carbon (MBC), and increased acid phosphatase (ACP) and ACP/MBC. The low and moderate N addition levels significantly increased enzyme C/P, vector length, and vector angle, but significantly decreased enzyme N/P. Results of redundancy analysis showed that the change in soil enzyme activity and enzymatic stoichiometry were mainly driven by soil available P content under N addition. In summary, N addition altered the microbial nutrient acquisition strategy, which increased nutrient allocation to P-acquiring enzyme production but reduced that to N-acquiring enzyme production. Moreover, N addition exacerbated the C and P limitation of soil microorganisms. Appropriate amount of P fertilizer could be applied to improve soil fertility of subtropical P. pubescens forest in the future.


Assuntos
Nitrogênio , Fósforo , Carbono/análise , China , Florestas , Nitrogênio/análise , Fósforo/análise , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA