Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890330

RESUMO

Infectious respiratory diseases caused by Bordetella bronchiseptica (Bb) are seriously endangering the development of the rabbit industry in China. Unfortunately, no licensed vaccines are available for this pathogen. The present study was designed to determine whether the inactivated Bb antigen formulated with vegetable oil adjuvant (named E515) which contains soybean oil, vitamin E, and ginseng saponins, functions as a safe and effective vaccine (E515-Bb) against Bb infection in rabbits. Based on local and systemic reactions, both the E515 adjuvant alone and the E515-Bb vaccine exhibited good safety in rabbits. Immune response analysis implies that rabbits immunized with the E515-Bb vaccine produced significantly higher, earlier, and longer-lasting specific antibody responses and activated Th1/Th2/Th17 cell responses than those immunized with the aluminum hydroxide (Alum)-adjuvanted Bb vaccine (Alum-Bb) or Bb antigen alone. Moreover, the E515-Bb vaccine effectively protected rabbits from Bb infection. Additionally, integrated multi-omics analysis revealed that the immunoprotective effect of the E515-Bb vaccine was achieved through upregulation of the complement and coagulation cascades and cell adhesion molecule (CAM) pathways, and the downregulation of the P53 pathway. Overall, these results indicate that the E515-Bb vaccine is safe, elicits an efficient immune response and provides good protection against Bb infection in rabbits. Thus, the E515-adjuvanted Bb vaccine can be considered a promising candidate vaccine for preventing Bb infection.

2.
Vaccines (Basel) ; 8(4)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322647

RESUMO

Neonates acquire from their mothers maternal antibody (MatAb) which results in poor immune response to vaccination. We previously demonstrated that ginseng stem-leaf saponins in combination with selenium (GSe) had adjuvant effect on the immune response to an attenuated pseudorabies virus (aPrV) vaccine. The present study was to evaluate GSe for its effect on the immune response to aPrV vaccine in neonatal mice with MatAb. Results showed that GSe had adjuvant effect on the immune response to aPrV vaccine in neonates. When GSe was co-administered with aPrV vaccine (aP-GSe), specific gB antibody, Th1 cytokines (IL-2, IL-12 and IFN-γ) and Th2 cytokines (IL-4, IL-6 and IL-10) responses were significantly increased in association with enhanced protection of vaccinated neonates against the lethal PrV challenge even though MatAb existed when compared to the neonates immunized with aPrV vaccine alone. GSe-enhanced immune response depended on its use in the primary immunization. The mechanisms underlying the adjuvant effect of GSe may be due to more innate immune related pathways activated by GSe. Transcriptome analysis of splenocytes from neonates immunized with aP-GSe, aPrV or saline solution showed that there were 3976 differentially expressed genes (DEGs) in aP-GSe group while 5959 DEGs in aPrV group when compared to the control. Gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis showed that innate immune responses and cytokine productions related terms or pathways were predominantly enriched in aP-GSe group, such as "NOD-like receptor signaling pathway", "Natural killer cell mediated cytotoxicity", "NF-κB signaling pathway", "cytokine-cytokine receptor interaction", and "Th1 and Th2 cell differentiation". Considering the potent adjuvant effect of GSe on aPrV vaccine in neonatal mice with MatAb, it deserves further investigation in piglets.

3.
Vaccine ; 38(33): 5343-5354, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571723

RESUMO

The present study was to evaluate the adjuvant effect of sunflower seed oil containing saponins extracted from the stem and leaf of Panax ginseng C.A. Meyer (E515-D) on the immune response induced by an inactivated Newcastle disease virus (NDV) in chickens. The results showed that E515-D promoted significantly higher serum NDV-specific HI and neutralizing antibody responses, IFN-γ and IL-4 levels, and lymphocyte proliferative responses to Con A, LPS, and NDV antigen than the conventional adjuvant Marcol 52. Different adjuvant effect between E515-D and Marcol 52 may be attributed to different genes expressed in two groups. Transcriptome analysis of splenocytes showed that there were 1198 differentially expressed genes (DEGs) with 539 up and 659 down regulated in E515-D group while 1395 DEGs with 697 up and 698 down regulated in Marcol 52 group in comparison with the control group. Analysis of gene ontology (GO) term and kyoto encyclopedia of Genes and Genomes (KEGG) pathways showed that the predominant immune related pathways included "Toll-like receptor signaling pathway", "NOD-like receptor signaling pathway", "C-type lectin receptor signaling pathway", and "Phosphatidylinositol signaling system" in E515-D group while Marcol 52 were "NOD-like receptor signaling pathway", "Phagosome", and "Lysosome", and the most relevant DEGs in E515-D group were STAT1, STAT2, PI3K, and IL-6. Considering the excellent adjuvant activity and vegetable origin, E515-D deserves further study as an adjuvant for vaccines used in food animals.


Assuntos
Doença de Newcastle , Panax , Saponinas , Vacinas Virais , Adjuvantes Imunológicos , Animais , Galinhas , Imunidade , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle , Folhas de Planta , Óleo de Girassol
4.
Vaccines (Basel) ; 8(2)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326379

RESUMO

Our previous study demonstrated that a vegetable oil consisting of soybean oil, vitamin E, and ginseng saponins (SO-VE-GS) had an adjuvant effect on a foot-and-mouth disease (FMD) vaccine in a mouse model. The present study was to compare the adjuvant effects of SO-VE-GS and the conventional ISA 206 on an FMD vaccine in Hu sheep. Animals were intramuscularly (i.m.) immunized twice at a 3-week interval with 1 mL of an FMD vaccine adjuvanted with SO-VE-GS (n = 10) or ISA 206 (n = 9). Animals without immunization served as control (n = 10). Blood was sampled prior to vaccination and at 2, 4, 6, and 8 weeks post the booster immunization to detect FMD virus (FMDV)-specific IgG. Blood collected at 8 weeks after the booster was used for the analyses of IgG1 and IgG2, serum neutralizing (SN) antibody, IL-4 and IFN-γ production, and proteomic profiles. The results showed that IgG titers rose above the protection level (1:128) in SO-VE-GS and ISA 206 groups after 2 and 4 weeks post the booster immunization. At 6 weeks post the booster, the ISA 206 group had 1 animal with IgG titer less than 1:128 while all the animals in the SO-VE-GS group retained IgG titers of more than 1:128. At 8 weeks post the booster, 6 of 9 animals had IgG titers less than 1:128 with a protective rate of 33.3% in the ISA 206 group, while only 1 of 10 animals had IgG titer less than 1:128 with a protective rate of 90% in the SO-VE-GS group, with statistical significance. In addition, IgG1, IgG2, SN antibodies, IL-4, and IFN-γ in the SO-VE-GS group were significantly higher than those of the ISA 206 group. Different adjuvant effects of SO-VE-GS and ISA 206 may be explained by the different proteomic profiles in the two groups. There were 39 and 47 differentially expressed proteins (DEPs) identified in SO-VE-GS compared to the control or ISA 206 groups, respectively. In SO-VE-GS vs. control, 3 immune related gene ontology (GO) terms and 8 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were detected, while 2 immune related GO terms and 5 KEGG pathways were found in ISA 206 vs. control. GO and KEGG analyses indicated that 'positive regulation of cytokine secretion', 'Th1/Th2 cell differentiation', and 'Toll-like receptor signaling pathways', were obviously enriched in the SO-VE-GS group compared to the other groups. Coupled with protein-protein interaction (PPI) analysis, we found that B7TJ15 (MAPK14) was a key DEP for SO-VE-GS to activate the immune responses in Hu sheep. Therefore, SO-VE-GS might be a promising adjuvant for an FMD vaccine in Hu sheep.

5.
J Immunol Res ; 2020: 2714257, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149156

RESUMO

Pseudorabies is an important infectious disease of swine, and immunization using attenuated pseudorabies virus (aPrV) vaccine is a routine practice to control this disease in swine herds. This study was to evaluate a saline solution containing ginseng stem-leaf saponins (GSLS) and sodium selenite (Se) as a vaccine adjuvant for its enhancement of immune response to aPrV vaccine. The results showed that aPrV vaccine diluted with saline containing GSLS-Se (aP-GSe) induced significantly higher immune responses than that of the vaccine diluted with saline alone (aP-S). The aP-GSe promoted higher production of gB-specific IgG, IgG1, and IgG2a, neutralizing antibody titers, secretion of Th1-type (IFN-γ, IL-2, IL-12), and Th2-type (IL-4, IL-6, IL-10) cytokines, and upregulated the T-bet/GATA-3 mRNA expression when compared to aP-S. In addition, cytolytic activity of NK cells, lymphocyte proliferation, and CD4+/CD8+ ratio was also significantly increased by aP-GSe. More importantly, aP-GSe conferred a much higher resistance of mice to a field virulent pseudorabies virus (fPrV) challenge. As the present study was conducted in mice, further study is required to evaluate the aP-GSe to improve the vaccination against PrV in swine.


Assuntos
Adjuvantes Imunológicos , Panax/química , Saponinas/farmacologia , Selênio/farmacologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Vacinas/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Biomarcadores , Relação CD4-CD8 , Citocinas/metabolismo , Feminino , Expressão Gênica , Imunoglobulina G/imunologia , Camundongos , Vacinas contra Pseudorraiva/imunologia , Saponinas/química , Selênio/química , Soluções , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Suínos , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo
6.
Vaccines (Basel) ; 7(4)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600943

RESUMO

The present study evaluated soybean oil (SO) containing vitamin E (VE) and ginseng saponins (GS) (SO-VE-GS) for their adjuvant effect on foot-and-mouth disease (FMD) vaccine. Since mineral oil ISA 206 is a common adjuvant used in the FMD vaccine, it was used as a control adjuvant in this study. VE and GS were found to have a synergistic adjuvant effect. When mice were immunized with the FMD vaccine emulsified in SO with VE and GS, significantly higher serum IgG, IgG1, and IgG2a were found than VE and GS used alone. SO-VE-GS and ISA 206 behaved differently in adjuvant activities. When mice were immunized with the FMD vaccine adjuvanted with SO-VE-GS, significantly higher and earlier production of serum IgG was found than that adjuvanted with ISA 206. Although both adjuvants significantly increased the number of bone marrow plasma cells, a stimulation index of lymphocytes (SI) as well as the production of IL-4 and IL-6, SO-VE-GS promoted significantly higher SI and the ratio of CD4+/CD8+ T cells with production of increased IFN-γ and decreased TGF-ß1 as compared with the ISA 206 group. The data suggested that SO-VE-GS activated Th1/Th2 immune responses. Transcriptome analysis of splenocytes showed that differentially expressed genes (DEGs), immune-related gene ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched in the SO-VE-GS group. Therefore, the potent adjuvant effect of SO-VE-GS on the FMD vaccine may be attributed to the immune-related gene profile expressed in lymphocytes. Due to its plant origin and due to being much cheaper than imported mineral oil ISA 206, SO-VE-GS deserves further study in relation to vaccines used in food animals.

7.
Microbiol Immunol ; 63(7): 269-279, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31141221

RESUMO

Pseudorabies, a herpesvirus infection, is mainly controlled by using attenuated live vaccines. In this study, the effect of ginseng stem and leaf saponins (GSLS) in combination with selenium (Se; in the form of sodium selenite) on vaccination against attenuated pseudorabies virus (aPrV) was evaluated. It was found that GSLS and Se have an adjuvant effect and that a combination of GSLS and Se stimulates significantly enhanced immune responses than does GSLS or Se alone. Following oral administration of GSLS, mice immunized with an attenuated PrV vaccine diluted in Se-containing physiological saline solution (PSS) provoked a significantly stronger gB-specific serum antibodies response (IgG, IgG1 and IgG2a), enhanced lymphocyte proliferation and cytolytic activity of NK cells, along with higher production of cytokines (IFN-γ, IL-12, IL-5 and IL-10) by splenocytes. Notably, the combination of GSLS and Se conferred a much higher resistance to fPrV challenge after immunization of the mice with aPrV vaccine. This study offers convincing experimental evidence that an injection of Se with oral GSLS is a promising adjuvant combination that improves the efficacy of vaccination against PrV and deserves further study regarding improvement of responses to other animal vaccines.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Herpesvirus Suídeo 1/imunologia , Panax/química , Folhas de Planta/química , Vacinas contra Pseudorraiva/imunologia , Saponinas/farmacologia , Selênio/farmacologia , Vacinas Atenuadas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Administração Oral , Animais , Formação de Anticorpos , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Combinação de Medicamentos , Feminino , Febre Aftosa/prevenção & controle , Imunização , Imunoglobulina G/sangue , Células Matadoras Naturais/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Doença de Newcastle/prevenção & controle , Extratos Vegetais/farmacocinética , Pseudorraiva/prevenção & controle , Saponinas/administração & dosagem , Selênio/administração & dosagem , Vacinação , Vacinas Atenuadas/administração & dosagem
8.
Mol Immunol ; 111: 19-26, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30952011

RESUMO

Previous study demonstrated that total polysaccharides isolated from Atractylodis macrocephalae Koidz. (RAMPtp) were effective to eliminate intramammary infection in cows. The present study was designed to investigate the immunomodulatory activity of RAMPtp in mouse splenocytes. Splenocyte proliferation, natural killer (NK) cytotoxicity, productions of NO and cytokines, transcription factor activity as well as the signal pathways and receptor were examined. The results showed that RAMPtp significantly promoted splenocyte proliferation and made the cells enter S and G2/M phases, increased ratios of T/B cells, boosted NK cytotoxicity, enhanced transcriptional activities of nuclear factor of activated T cells (NFAT), nuclear factor κB (NF-κB) and activator protein 1 (AP-1), and stimulated secretions of NO, immunoglobulin G (IgG) and multiple cytokine families (IL-1α, IL-1ß, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12p40, IL-12p70, IL-13, IFN-γ, TNF-α, G-CSF, GM-CSF, KC, MIP-1α, MIP-1ß, RANTES and Eotaxin). In addition, all the specific inhibitors against the mitogen-activated protein kinases (MAPKs) and NF-κB significantly suppressed the IL-6 production induced by RAMPtp. Moreover, splenocytes from Toll-like receptor 4 (TLR4) deficient mouse responded equally to RAMPtp stimulation as the wild-type. Therefore, RAMPtp might induce splenocytes activation at least in part via the TLR4-independent MAPKs and NF-κB signaling pathways. The present results would be useful to further understand the immunomodulatory mechanisms of RAMPtp in elimination of intramammary infection in cows.


Assuntos
Asteraceae/química , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Baço/efeitos dos fármacos , Animais , Bovinos , Citocinas/metabolismo , Feminino , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Baço/metabolismo , Receptor 4 Toll-Like/metabolismo
9.
Microbiol Immunol ; 62(3): 187-194, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29280507

RESUMO

In the present study, the adjuvant effect of soybean oil containing ginseng root saponins (SO-GS-R) on the immune response to foot-and-mouth disease vaccine (FMDV) in mice was investigated. When immunized with FMDV antigen emulsified in an SO-GS-R formulation, mice generated remarkably higher serum antibody and cytokine responses than mice immunized with FMDV antigen alone. To elucidate the mechanisms underlying the adjuvant effect of SO-GS-R, we measured cytokines in serum and muscle tissue after intramuscular injection of SO-GS-R. The results showed that injection of SO-GS-R significantly increased the levels of IL-1ß, IL-5, IL-6, G-CSF, KC, MCP-1, MIP-1α, and MIP-1ß in both serum and muscle. These results suggested that SO-GS-R recruits neutrophils, eosinophils, T cells and macrophages, causing immune cell recruitment at the injection site, driving antigen-presenting cells to actively participate in the onset of immunity, and amplifying the immune responses. Considering its adjuvant activity and plant-derived properties, SO-GS-R should be further studied for its adjuvant effect on vaccines used in food animals.


Assuntos
Adjuvantes Imunológicos/farmacologia , Citocinas/biossíntese , Febre Aftosa/prevenção & controle , Imunização , Panax/imunologia , Saponinas/imunologia , Óleo de Soja/imunologia , Vacinas Virais/imunologia , Ração Animal , Animais , Anticorpos Antivirais/sangue , Quimiocina CCL2/sangue , Quimiocina CCL3/sangue , Quimiocina CCL4/sangue , Quimiocina CXCL1/sangue , Citocinas/sangue , Feminino , Febre Aftosa/imunologia , Vírus da Febre Aftosa/imunologia , Fator Estimulador de Colônias de Granulócitos/sangue , Imunoglobulina G/sangue , Injeções Intramusculares , Interleucina-1beta/sangue , Interleucina-5/sangue , Interleucina-6/sangue , Camundongos , Camundongos Endogâmicos BALB C , Músculos/imunologia , Óleos de Plantas/farmacologia , Saponinas/farmacologia , Óleo de Soja/química , Fatores de Tempo , Vacinação
10.
Artigo em Inglês | MEDLINE | ID: mdl-23533478

RESUMO

The objective of this study is to establish poultry liver injury model induced by (CCl4) and seek effective hepatoprotective herbals for clinical application. Different doses of CCl4 dissolved in vegetable oil (1 : 1, V/V) were injected via pectoral muscle to induce acute liver injury model in chickens. An herbal formula, Longyin decoction, was prepared for hepatoprotection test on chicken acute liver injury models. The pathologic changes of the liver were observed, and the activities of ALT and AST were, respectively, detected to evaluate the hepatoprotective effects of Longyin decoction on chickens. The chicken acute liver injury model was successfully established by injecting CCl4 via pectoral muscle. The best dose of CCl4 inducing chicken liver injury was 4.0 mL/kg·BW (body weight). The results of qualitative determination by HPTLC showed that the components of Longyin decoction contained Gentian, Capillaries, Gardenia, and Bupleurum root. In the high-dose Longyin group and the middle-dose Longyin group, the pathological changes of the damaged liver were mitigated and the activities of ALT and AST in serum were reduced significantly. Longyin decoction has obvious hepatoprotective effect on acute liver injury induced by CCl4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA