Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 116: 52-60, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34216786

RESUMO

The aim of this study was to investigate the effects of dietary bile acids (BAs) on intestinal healthy status of tongue sole in terms of immunity, antioxidant status, digestive ability, mucosal barrier-related genes expression and microbiota. Three experimental diets were prepared with BA levels at 0 mg/kg (CT), 300 mg/kg (BA1) and 900 mg/kg (BA2) in a commercial basal diet. Each diet was fed to three replicates with 120 fish (10.87 ± 0.32 g) in each tank. After an 8-week feeding trial, growth parameters were significantly enhanced in both BAs supplementary groups (P < 0.05), and compared with CT group, survival rate in BA2 group was significantly improved (P < 0.05). Intestinal lysozyme activity and contents of immunoglobulin M and complement 3 were significantly increased in both BAs supplementary groups (P < 0.05), suggesting an enhancement effect on the non-specific immune response. BAs inclusion also significantly improved intestinal antioxidant capabilities by increasing antioxidase activities and decreasing malondialdehyde levels. In addition, compared with CT group, intestinal digestive ability was substantially enhanced as indicated by the significantly increased lipase activity in BA2 group (P < 0.05) and significantly increased amylase activity in BA1 and BA2 groups (P < 0.05). Coincidentally, BAs inclusion significantly upregulated the relative expression of intestinal mucosal barrier-related genes (P < 0.05). Further, dietary BAs distinctly remodeled intestinal microbiota by decreased the abundance of some potential pathogenic bacteria. In conclusion, dietary BAs supplementation is an effective way to improve the intestinal healthy status of tongue sole.


Assuntos
Ácidos e Sais Biliares/farmacologia , Suplementos Nutricionais , Linguados , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Fosfatase Alcalina/imunologia , Amilases/metabolismo , Animais , Complemento C3/imunologia , Dieta/veterinária , Proteínas de Peixes/metabolismo , Linguados/genética , Linguados/imunologia , Linguados/metabolismo , Linguados/microbiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulina M/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lipase/metabolismo , Muramidase/imunologia , Oxirredutases/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Junções Íntimas/genética
2.
Phytother Res ; 33(4): 1074-1083, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30768733

RESUMO

Osteoporosis is characterized by low bone mineral density and microarchitectural deterioration of bone tissue. N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide (MBOC) is one of the macamides isolated from Maca (Lepidium meyenii Walp.), a cruciferous plant from the Andes of Peru. In this study, C3H/10T1/2 mesenchymal stem cells were treated with MBOC in osteogenic induction medium. An ovariectomized (OVX) mouse model was used to investigate the effect of 1-month MBOC treatment on the prevention of postmenopausal osteoporosis. Remarkably, trabecular thickness, trabecular number, and bone volume/tissue volume of the distal femoral metaphysis were significantly increased in OVX + MBOC mice compared with OVX mice, as revealed by microcomputed tomography analysis. Trabecular separation was decreased in OVX + MBOC mice compared with OVX mice. Consistently, MBOC increased the levels of osteocalcin and runt-related transcription factor 2 in OVX mice, as well as the expression of runt-related transcription factor 2, osterix, and alkaline phosphatase in C3H/10T1/2 cells. Mechanistically, MBOC activates the canonical Wnt/ß-catenin signaling pathway via inhibiting phosphorylation of GSK-3ß at Tyr216 and maintaining ß-catenin expression. Collectively, the current study demonstrates the robustness of MBOC in the induction of mesenchymal stem cells osteogenic differentiation and consequent bone formation, suggesting that MBOC may be a potentially effective drug to treat postmenopausal osteoporosis.


Assuntos
Lepidium/química , Osteoporose/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA