Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 126: 74-85, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29505970

RESUMO

Ethylene proved to be an important modulator of salicylic acid (SA) signalling pathway. Since SA may regulate both the production and scavenging of hydrogen peroxide (H2O2), which show light-dependency, the aim of this study was to compare H2O2 metabolism in the leaves of SA-treated wild-type (WT) tomato (Solanum lycopersicum L. cv. Ailsa Craig) and in ethylene receptor Never-ripe (Nr) mutants grown in normal photoperiod or in prolonged darkness. H2O2 accumulation was higher in the WT than in the mutants in normal photoperiod after 1 mM SA treatment, while Nr leaves contained more H2O2 after light deprivation. The expression of certain superoxide dismutase (SOD) genes and activity of the enzyme followed the same tendency as H2O2, which was scavenged by different enzymes in the two genotypes. Catalase (CAT, EC 1.11.1.6) activity was inhibited by SA in WT, while the mutants maintained enhanced enzyme activity in the dark. Thus, in WT, CAT inhibition was the major component of the H2O2 accumulation elicited by 1 mM SA in a normal photoperiod, since the expression and/or activity of ascorbate (APX, EC 1.11.1.11) and guaiacol peroxidases (POD, EC 1.11.1.7) were induced in the leaves. The absence of APX and POD activation in mutant plants suggests that the regulation of these enzymes by SA needs functional ethylene signalling. While the block of ethylene perception in Nr mutants was overwritten in the transcription and activity of certain SOD and CAT isoenzymes during prolonged darkness, the low APX and POD activities led to H2O2 accumulation in these tissues.


Assuntos
Escuridão , Etilenos/metabolismo , Homeostase/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Fotoperíodo , Ácido Salicílico/farmacologia , Solanum lycopersicum/metabolismo , Catalase/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/biossíntese , Superóxido Dismutase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA