Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1290971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169845

RESUMO

Obesity is a pathophysiological condition, dependent on body fat accumulation, that progressively induces systemic oxidative stress/inflammation leading to a set of associated clinical manifestations, including male infertility. CircRNAs, covalently closed RNA molecules, are key regulators of sperm quality. Recently, we have characterized a complete profile of high-fat diet (HFD) spermatic circRNA cargo, predicting paternal circRNA dependent networks (ceRNETs), potentially involved in sperm oxidative stress and motility anomalies. In the current work, using HFD C57BL6/J male mice, orally treated with a mix of bioactive molecules (vitamin C; vitamin B12; vitamin E; selenium-L-methionine; glutathione-GSH) for 4 weeks, a reversion of HFD phenotype was observed. In addition, the functional action of the proposed formulations on circRNA biogenesis was evaluated by assessing the endogenous spermatic FUS-dependent backsplicing machinery and related circRNA cargo. After that, spermatic viability and motility were also analyzed. Paternal ceRNETs, potentially involved in oxidative stress regulation and sperm motility defects, were identified and used to suggest that the beneficial action of the food supplements here conveniently formulated on sperm motility was likely due to the recovery of circRNA profile. Such a hypothesis was, then, verified by an in vitro assay.


Assuntos
Antioxidantes , RNA Circular , Masculino , Camundongos , Animais , Antioxidantes/farmacologia , RNA Circular/genética , Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Obesidade/tratamento farmacológico
2.
Int J Mol Sci ; 23(15)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955611

RESUMO

Various different agri-food biomasses might be turned into renewable sources for producing biodegradable and edible plastics, potentially attractive for food, agricultural and cosmeceutical sectors. In this regard, different seeds utilized for edible and non-edible oil extraction give rise to high amounts of organic by-products, known as seed oil cakes (SOCs), potentially able to become protein-rich resources useful for the manufacturing of biodegradable films. This study reports the potential of SOC derived from Argania spinosa (argan), a well-known plant containing valuable non-refined oil suitable for food or cosmetic use, to be a promising valuable source for production of a protein-based matrix of biomaterials to be used in the pharmaco-cosmetic sector. Thus, glycerol-plasticized films were prepared by casting and drying using different amounts of argan seed protein concentrate, in the presence of increasing glycerol concentrations, and characterized for their morphological, mechanical, barrier, and hydrophilicity properties. In addition, their antioxidant activity and effects on cell viability and wound healing were investigated. The hydrophobic nature of the argan protein-based films, and their satisfying physicochemical and biological properties, suggest a biorefinery approach for the recycling of argan SOC as valuable raw material for manufacturing new products to be used in the cosmeceutical and food industries.


Assuntos
Cosmecêuticos , Sapotaceae , Glicerol , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Sapotaceae/química , Sementes
3.
Molecules ; 27(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35164377

RESUMO

Plant extracts have shown beneficial properties in terms of skin repair, promoting wound healing through a plethora of mechanisms. In particular, the poly-/oligosaccharidic aqueous extract of Triticum vulgare (TVE), as well as TVE-based products, shows interesting biological assets, hastening wound repair. Indeed, TVE acts in the treatment of tissue regeneration mainly on decubitus and venous leg ulcers. Moreover, on scratched monolayers, TVE prompts HaCat cell migration, correctly modulating the expression of metalloproteases toward a physiological matrix remodeling. Here, using the same HaCat-based in vitro scratch model, the TVE effect has been investigated thanks to an LFQ proteomic analysis of HaCat secretomes and immunoblotting. Indeed, the unbiased TVE effect on secreted proteins has not yet been fully understood, and it could be helpful to obtain a comprehensive picture of its bio-pharmacological profile. It has emerged that TVE treatment induces significant up-regulation of several proteins in the secretome (153 to be exact) whereas only a few were down-regulated (72 to be exact). Interestingly, many of the up-regulated proteins are implicated in promoting wound-healing-related processes, such as modulating cell-cell interaction and communication, cell proliferation and differentiation, and prompting cell adhesion and migration.


Assuntos
Queratinócitos/metabolismo , Extratos Vegetais/farmacologia , Proteoma/metabolismo , Proteômica/métodos , Triticum/química , Cicatrização , Diferenciação Celular , Movimento Celular , Proliferação de Células , Humanos , Queratinócitos/efeitos dos fármacos , Proteoma/análise
4.
Molecules ; 25(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31972968

RESUMO

BACKGROUND: It has been shown that many plant- or microbial-derived oligos and polysaccharides may prompt tissue repair. Among the different extracts that have been studied, the aqueous one of Triticum vulgare (TVE) that was obtained from a whole germinated plant has been proven to have different biological properties that are useful in the process of wound healing. Nevertheless, with the long tradition of its use in pharmaceutical cream and ointments, especially in Italy, a new protocol was recently proposed (and patented) to improve the extraction process. METHODS: In a simplified in vitro model, human keratinocyte monolayers were scratched and used to run time lapse experiments by using time lapse video microscopy (TLVM) to quantify reparation rate while considering a dose-response effect. Contemporarily, the molecular mechanisms that are involved in tissue repair were studied. In fact, key biomarkers that are involved in remodeling, such as MMP-2 and MMP-9, and in matrix structure assembly, such as collagen I, elastin, integrin αV and aquaporin 3, were evaluated with gene expression analyses (RT-PCR) and protein quantification in western blotting. RESULTS: All TVE doses tested on the HaCat-supported cell proliferation. TVE also prompted cell migration in respect to the control, correctly modulating the timing of metalloproteases expression toward a consistent and well-assessed matrix remodeling. Furthermore, TVE treatments upregulated and positively modulated the expression of the analyzed biomarkers, thus resulting in a better remodeling of dermal tissue during healing. CONCLUSIONS: The in vitro results on the beneficial effects of TVE on tissue elasticity and regeneration may support a better understanding of the action mechanism of TVE as active principles in pharmaceutical preparation in wound treatment.


Assuntos
Queratinócitos/patologia , Extratos Vegetais/farmacologia , Triticum/química , Cicatrização/efeitos dos fármacos , Aquaporina 3/metabolismo , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Elastina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Integrina alfaV/metabolismo , Queratinócitos/efeitos dos fármacos , Peso Molecular , Imagem com Lapso de Tempo , Transcrição Gênica/efeitos dos fármacos , Viscosidade , Cicatrização/genética
5.
Antioxidants (Basel) ; 10(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396456

RESUMO

Several plant extracts are acquiring increasing value because of their antioxidant activity and hypolipidemic properties. Among them, great interest has been recently paid to açai fruit as a functional food. The aim of this study was to test the ability of açai extract in reducing oxidative stress and modulating lipid metabolism in vitro using different cell models and different types of stress. In fact, lipid peroxidation as evaluated in a HepG2 model was reduced five-fold when using 0.25 µg/mL of extract, and it was further reduced (20-fold) with the concentration increase up to 2.5 µg/mL. With the non alcoholic fatty liver disease (NAFLD)in vitro model, all concentrations tested showed at least a two-fold reduced fat deposit. In addition, primary adipocytes challenged with TNF-α under hypoxic conditions to mimic the persistent subcutaneous fat, treated with açai extract showed an approximately 40% reduction of fat deposit. Overall, our results show that açai is able to counteract oxidative states in all the cell models analysed and to prevent the accumulation of lipid droplets. No toxic effects and high stability overtime were highlighted at the concentrations tested. Therefore, açai can be considered a suitable support in the prevention of different alterations of lipid and oxidative metabolism responsible for fat deposition and metabolic pathological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA