Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Dev Psychobiol ; 66(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38646069

RESUMO

Choline and folate are critical nutrients for fetal brain development, but the timing of their influence during gestation has not been previously characterized. At different periods during gestation, choline stimulation of α7-nicotinic receptors facilitates conversion of γ-aminobutyric acid (GABA) receptors from excitatory to inhibitory and recruitment of GluR1-R2 receptors for faster excitatory responses to glutamate. The outcome of the fetal development of inhibition and excitation was assessed in 159 newborns by P50 cerebral auditory-evoked responses. Paired stimuli, S1, S2, were presented 500 msec apart. Higher P50 amplitude in response to S1 (P50S1microV) assesses excitation, and lower P50S2microV assesses inhibition in this paired-stimulus paradigm. Development of inhibition was related solely to maternal choline plasma concentration and folate supplementation at 16 weeks' gestation. Development of excitation was related only to maternal choline at 28 weeks. Higher maternal choline concentrations later in gestation did not compensate for earlier lower concentrations. At 4 years of age, increased behavior problems on the Child Behavior Checklist 1½-5yrs were related to both newborn inhibition and excitation. Incomplete development of inhibition and excitation associated with lower choline and folate during relatively brief periods of gestation thus has enduring effects on child development.


Assuntos
Colina , Potenciais Evocados Auditivos , Ácido Fólico , Humanos , Colina/farmacologia , Colina/metabolismo , Feminino , Ácido Fólico/farmacologia , Masculino , Recém-Nascido , Gravidez , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Pré-Escolar , Desenvolvimento Fetal/fisiologia , Desenvolvimento Fetal/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Adulto , Idade Gestacional , Desenvolvimento Infantil/fisiologia , Desenvolvimento Infantil/efeitos dos fármacos
2.
Blood ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513237

RESUMO

Recent large-scale multi-omics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on two separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured L-carnitine and acyl-carnitines in 13,091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation (REDS) study. Genome wide association studies against 879,000 polymorphisms identified critical genetic factors contributing to inter-donor heterogeneity in end-of-storage carnitine levels, including common non-synonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, SLC16A9); carnitine synthesis (FLVCR1, MTDH) and metabolism (CPT1A, CPT2, CRAT, ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying two alleles of the rs12210538 SLC22A16 Single Nucleotide Polymorphism exhibited the lowest L-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice and Percoll density gradients of human RBCs, showed age-dependent depletions of L-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process following chemically induced membrane lipid damage. Supplementation of stored murine RBCs with L-carnitine boosted post-transfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.

3.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060311

RESUMO

Platelets from patients with myeloproliferative neoplasms (MPNs) exhibit a hyperreactive phenotype. Here, we found elevated P-selectin exposure and platelet-leukocyte aggregates indicating activation of platelets from essential thrombocythemia (ET) patients. Single-cell RNA-seq analysis of primary samples revealed significant enrichment of transcripts related to platelet activation, mTOR, and oxidative phosphorylation in ET patient platelets. These observations were validated via proteomic profiling. Platelet metabolomics revealed distinct metabolic phenotypes consisting of elevated ATP generation accompanied by increases in the levels of multiple intermediates of the tricarboxylic acid cycle, but lower α-ketoglutarate (α-KG) in MPN patients. Inhibition of PI3K/AKT/mTOR signaling significantly reduced metabolic responses and hyperreactivity in MPN patient platelets, while α-KG supplementation markedly reduced oxygen consumption and ATP generation. Ex vivo incubation of platelets from both MPN patients and Jak2 V617F-knockin mice with α-KG supplementation significantly reduced platelet activation responses. Oral α-KG supplementation of Jak2 V617F mice decreased splenomegaly and reduced hematocrit, monocyte, and platelet counts. Finally, α-KG treatment significantly decreased proinflammatory cytokine secretion from MPN CD14+ monocytes. Our results reveal a previously unrecognized metabolic disorder in conjunction with aberrant PI3K/AKT/mTOR signaling that contributes to platelet hyperreactivity in MPN patients.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Trombocitemia Essencial , Humanos , Camundongos , Animais , Multiômica , Fosfatidilinositol 3-Quinases/genética , Proteômica , Proteínas Proto-Oncogênicas c-akt/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Trombocitemia Essencial/genética , Inflamação , Serina-Treonina Quinases TOR/genética , Trifosfato de Adenosina , Janus Quinase 2/genética , Mutação
4.
J Thromb Haemost ; 22(4): 1154-1166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072374

RESUMO

BACKGROUND: Platelet (PLT) product transfusion is a life-saving therapy for actively bleeding patients. There is an urgent need to maintain PLT function and extend shelf life to improve outcomes in these patients. Cold-stored PLT (CS-PLT) maintain hemostatic potential better than room temperature-stored PLT (RT-PLT). However, whether function in long-term CS-PLT is maintained under physiological flow regimes and/or determined by cold-induced metabolic changes is unknown. OBJECTIVES: This study aimed to (i) compare the function of RT-PLT and CS-PLT under physiological flow conditions, (ii) determine whether CS-PLT maintain function after 3 weeks of storage, and (iii) identify metabolic pathways associated with the CS-PLT lesion. METHODS: We performed phenotypic and functional assessments of RT- and CS-PLT (22 °C and 4 °C storage, respectively; N = 10 unique donors) at storage days 0, 5, and/or 21 via metabolomics, flow cytometry, aggregation, thrombin generation, viscoelastic testing, and a microfluidic assay to measure primary hemostatic function. RESULTS: Day 21 4 °C PLT formed an occlusive thrombus under arterial shear at a similar rate to day 5 22 °C PLT. Day 21 4 °C PLTs had enhanced thrombin generation capacity compared with day 0 PLT and maintained functionality comparable to day RT-PLT across all assays performed. Key metrics from microfluidic assessment, flow cytometry, thrombin generation, and aggregation were associated with 4 °C storage, and metabolites involved in taurine and purine metabolism significantly correlated with these metrics. Taurine supplementation of PLT during storage improved hemostatic function under flow. CONCLUSION: CS-PLT stored for 3 weeks maintain hemostatic activity, and storage-induced phenotype and function are associated with taurine and purine metabolism.


Assuntos
Hemostáticos , Humanos , Trombina/metabolismo , Preservação de Sangue , Plaquetas/metabolismo , Purinas/metabolismo
5.
Nutrients ; 15(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37892532

RESUMO

Long-chain polyunsaturated fatty acids (LC-PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary LC-PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. Female C57BL/6J mice consumed diets containing increasing amounts of fish oil (FO) ad libitum for 8 weeks. RBC deformability, filterability, and post-transfusion recovery (PTR) were evaluated before and after cold storage. Lipidomics and lipid peroxidation markers were evaluated in fresh and stored RBCs. High-dose dietary FO (50%, 100%) was associated with a reduction in RBC quality (i.e., in vivo lifespan, deformability, lipid peroxidation) along with a reduced 24 h PTR after cold storage. Low-dose dietary FO (6.25-12.5%) improved the filterability of fresh RBCs and reduced the lipid peroxidation of cold-stored RBCs. Although low doses of FO improved RBC deformability and reduced oxidative stress, no improvement was observed for the PTR of stored RBCs. The improvement in RBC deformability observed with low-dose FO supplementation could potentially benefit endurance athletes and patients with conditions resulting from reduced perfusion, such as peripheral vascular disease.


Assuntos
Gorduras Insaturadas na Dieta , Deformação Eritrocítica , Humanos , Feminino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Eritrócitos/metabolismo , Óleos de Peixe/farmacologia , Óleos de Peixe/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Gorduras Insaturadas na Dieta/metabolismo , Preservação de Sangue/métodos
6.
Haematologica ; 108(10): 2639-2651, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078267

RESUMO

Although red blood cell (RBC) transfusions save lives, some patients develop clinically-significant alloantibodies against donor blood group antigens, which then have adverse effects in multiple clinical settings. Few effective measures exist to prevent RBC alloimmunization and/or eliminate alloantibodies in sensitized patients. Donor-related factors may influence alloimmunization; thus, there is an unmet clinical need to identify which RBC units are immunogenic. Repeat volunteer blood donors and donors on iron supplements have elevated reticulocyte counts compared to healthy non-donors. Early reticulocytes retain mitochondria and other components, which may act as danger signals in immune responses. Herein, we tested whether reticulocytes in donor RBC units could enhance RBC alloimmunization. Using a murine model, we demonstrate that transfusing donor RBC units with increased reticulocyte frequencies dose-dependently increased RBC alloimmunization rates and alloantibody levels. Transfusing reticulocyte-rich RBC units was associated with increased RBC clearance from the circulation and a robust proinflammatory cytokine response. As compared to previously reported post-transfusion RBC consumption patterns, erythrophagocytosis from reticulocyte-rich units was increasingly performed by splenic B cells. These data suggest that reticulocytes in a donated RBC unit impact the quality of blood transfused, are targeted to a distinct compartment, and may be an underappreciated risk factor for RBC alloimmunization.


Assuntos
Isoanticorpos , Reticulócitos , Humanos , Camundongos , Animais , Doadores de Sangue , Eritrócitos , Fatores de Risco
7.
Sci Transl Med ; 15(685): eabn5135, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857430

RESUMO

Patients with myelodysplastic syndrome and ring sideroblasts (MDS-RS) present with symptomatic anemia due to ineffective erythropoiesis that impedes their quality of life and increases morbidity. More than 80% of patients with MDS-RS harbor splicing factor 3B subunit 1 (SF3B1) mutations, the founder aberration driving MDS-RS disease. Here, we report how mis-splicing of coenzyme A synthase (COASY), induced by mutations in SF3B1, affects heme biosynthesis and erythropoiesis. Our data revealed that COASY was up-regulated during normal erythroid differentiation, and its silencing prevented the formation of erythroid colonies, impeded erythroid differentiation, and precluded heme accumulation. In patients with MDS-RS, loss of protein due to COASY mis-splicing led to depletion of both CoA and succinyl-CoA. Supplementation with COASY substrate (vitamin B5) rescued CoA and succinyl-CoA concentrations in SF3B1mut cells and mended erythropoiesis differentiation defects in MDS-RS primary patient cells. Our findings reveal a key role of the COASY pathway in erythroid maturation and identify upstream and downstream metabolites of COASY as a potential treatment for anemia in patients with MDS-RS.


Assuntos
Anemia , Síndromes Mielodisplásicas , Humanos , Eritropoese , Ácido Pantotênico , Qualidade de Vida , Fatores de Transcrição , Heme , Fatores de Processamento de RNA , Fosfoproteínas
8.
Pediatr Nephrol ; 38(1): 193-202, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507146

RESUMO

BACKGROUND: We compared plasma metabolites of amino acid oxidation and the tricarboxylic acid (TCA) cycle in youth with and without type 1 diabetes mellitus (T1DM) and related the metabolites to glomerular filtration rate (GFR), renal plasma flow (RPF), and albuminuria. Metabolites associated with impaired kidney function may warrant future study as potential biomarkers or even future interventions to improve kidney bioenergetics. METHODS: Metabolomic profiling of fasting plasma samples using a targeted panel of 644 metabolites and an untargeted panel of 19,777 metabolites was performed in 50 youth with T1DM ≤ 10 years and 20 controls. GFR and RPF were ascertained by iohexol and p-aminohippurate clearance, and albuminuria calculated as urine albumin to creatinine ratio. Sparse partial least squares discriminant analysis and moderated t tests were used to identify metabolites associated with GFR and RPF. RESULTS: Adolescents with and without T1DM were similar in age (16.1 ± 3.0 vs. 16.1 ± 2.9 years) and BMI (23.4 ± 5.1 vs. 22.7 ± 3.7 kg/m2), but those with T1DM had higher GFR (189 ± 40 vs. 136 ± 22 ml/min) and RPF (820 ± 125 vs. 615 ± 65 ml/min). Metabolites of amino acid oxidation and the TCA cycle were significantly lower in adolescents with T1DM vs. controls, and the measured metabolites were able to discriminate diabetes status with an AUC of 0.82 (95% CI: 0.71, 0.93) and error rate of 0.21. Lower glycine (r:-0.33, q = 0.01), histidine (r:-0.45, q < 0.001), methionine (r: -0.29, q = 0.02), phenylalanine (r: -0.29, q = 0.01), serine (r: -0.42, q < 0.001), threonine (r: -0.28, q = 0.02), citrate (r: -0.35, q = 0.003), fumarate (r: -0.24, q = 0.04), and malate (r: -0.29, q = 0.02) correlated with higher GFR. Lower glycine (r: -0.28, q = 0.04), phenylalanine (r:-0.3, q = 0.03), fumarate (r: -0.29, q = 0.04), and malate (r: -0.5, q < 0.001) correlated with higher RPF. Lower histidine (r: -0.28, q = 0.02) was correlated with higher mean ACR. CONCLUSIONS: In conclusion, adolescents with relatively short T1DM duration exhibited lower plasma levels of carboxylic acids that associated with hyperfiltration and hyperperfusion. TRIAL REGISTRATION: ClinicalTrials.gov NCT03618420 and NCT03584217 A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Diabetes Mellitus Tipo 1 , Insuficiência Renal , Adolescente , Humanos , Albuminúria , Ácidos Carboxílicos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Fumaratos , Taxa de Filtração Glomerular , Glicina , Histidina , Rim , Malatos , Fenilalanina , Insuficiência Renal/complicações
9.
Am J Perinatol ; 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36584689

RESUMO

OBJECTIVE: Small for gestational age (SGA) infants are at increased risk for neonatal morbidity and developmental problems in childhood. No current interventions during human pregnancy address this problem. This study investigated the possible relationship between maternal choline concentration during pregnancy and SGA infants. STUDY DESIGN: Maternal plasma choline concentrations were sampled at 16 and 28 weeks' gestation from women in a public prenatal clinic. Additional factors assessed were maternal age, body mass index, infection, C-reactive protein, hair cortisol, and compliance with prenatal vitamins and folate. Infants below the 10th percentile for gestational age were classified as SGA. Binary logistic regression was used to identify significant associated factors in pregnancies resulting in SGA infants compared with pregnancies resulting in non-SGA infants. RESULTS: Thirteen (8%) of 159 women had SGA infants. Maternal plasma choline concentrations were low for pregnant participants whose infants were SGA, with the 28-week concentration significantly lower compared with other participants. Plasma choline concentrations ≥7 µM at 28 weeks, consistent with a minimally adequate dietary intake of choline-containing foods, were achieved by only 2 (15%) of mothers with SGA infants, compared with 51% of mothers whose infants were not SGA. Choline concentrations <7 µM at 28 weeks' gestation were associated with an odds ratio for SGA of 16.6 (95% confidence interval: 1.5-189.2, p = 0.023). Other significant factors were female sex and maternal C-reactive protein plasma concentration during gestation. CONCLUSION: This observational study suggests that higher maternal choline levels may influence the risk for SGA. Maternal plasma choline concentrations are not routinely available in clinical laboratories. However, plasma choline levels can be increased by the mothers' intake of choline or phosphatidylcholine supplements. No nutritional intervention is currently recommended to prevent SGA, but the evidence from this study suggests that further consideration of the role of maternal choline may be warranted. KEY POINTS: · More females are small for gestational age.. · Low maternal choline is related to small infants.. · Maternal choline ≥7 µM at 28 weeks appears optimal..

10.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682720

RESUMO

Maternal obesity and consumption of a high-fat diet significantly elevate risk for pediatric nonalcoholic fatty liver disease (NAFLD), affecting 10% of children in the US. Almost half of these children are diagnosed with nonalcoholic steatohepatitis (NASH), a leading etiology for liver transplant. Animal models show that signs of liver injury and perturbed lipid metabolism associated with NAFLD begin in utero; however, safe dietary therapeutics to blunt developmental programming of NAFLD are unavailable. Using a mouse model of maternal Western-style diet (WD), we previously showed that pyrroloquinoline quinone (PQQ), a potent dietary antioxidant, protected offspring of WD-fed dams from development of NAFLD and NASH. Here, we used untargeted mass spectrometry-based lipidomics to delineate lipotoxic effects of WD on offspring liver and identify lipid targets of PQQ. PQQ exposure during pregnancy altered hepatic lipid profiles of WD-exposed offspring, upregulating peroxisome proliferator-activated receptor (PPAR) α signaling and mitochondrial fatty acid oxidation to markedly attenuate triglyceride accumulation beginning in utero. Surprisingly, the abundance of very long-chain ceramides, important in promoting gut barrier and hepatic function, was significantly elevated in PQQ-treated offspring. PQQ exposure reduced the hepatic phosphatidylcholine/phosphatidylethanolamine (PC/PE) ratio in WD-fed offspring and improved glucose tolerance. Notably, levels of protective n - 3 polyunsaturated fatty acids (PUFAs) were elevated in offspring exposed to PQQ, beginning in utero, and the increase in n - 3 PUFAs persisted into adulthood. Our findings suggest that PQQ supplementation during gestation and lactation augments pathways involved in the biosynthesis of long-chain fatty acids and plays a unique role in modifying specific bioactive lipid species critical for protection against NAFLD risk in later life.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Adulto , Animais , Criança , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Ácidos Graxos Ômega-3/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Longevidade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , PPAR alfa/metabolismo , Cofator PQQ/farmacologia , Gravidez
11.
Cell Metab ; 34(2): 299-316.e6, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108516

RESUMO

Due to lack of nuclei and de novo protein synthesis, post-translational modification (PTM) is imperative for erythrocytes to regulate oxygen (O2) delivery and combat tissue hypoxia. Here, we report that erythrocyte transglutminase-2 (eTG2)-mediated PTM is essential to trigger O2 delivery by promoting bisphosphoglycerate mutase proteostasis and the Rapoport-Luebering glycolytic shunt for adaptation to hypoxia, in healthy humans ascending to high altitude and in two distinct murine models of hypoxia. In a pathological hypoxia model with chronic kidney disease (CKD), eTG2 is critical to combat renal hypoxia-induced reduction of Slc22a5 transcription and OCNT2 protein levels via HIF-1α-PPARα signaling to maintain carnitine homeostasis. Carnitine supplementation is an effective and safe therapeutic approach to counteract hypertension and progression of CKD by enhancing erythrocyte O2 delivery. Altogether, we reveal eTG2 as an erythrocyte protein stabilizer orchestrating O2 delivery and tissue adaptive metabolic reprogramming and identify carnitine-based therapy to mitigate hypoxia and CKD progression.


Assuntos
Carnitina , Insuficiência Renal Crônica , Animais , Carnitina/metabolismo , Eritrócitos/metabolismo , Eritrócitos/patologia , Homeostase , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Oxigênio/metabolismo , Insuficiência Renal Crônica/patologia , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Transglutaminases/metabolismo
12.
Psychol Med ; 52(14): 3019-3028, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33491615

RESUMO

BACKGROUND: Prenatal choline is a key nutrient, like folic acid and vitamin D, for fetal brain development and subsequent mental function. We sought to determine whether effects of higher maternal plasma choline concentrations on childhood attention and social problems, found in an initial clinical trial of choline supplementation, are observed in a second cohort. METHODS: Of 183 mothers enrolled from an urban safety net hospital clinic, 162 complied with gestational assessments and brought their newborns for study at 1 month of age; 83 continued assessments through 4 years of age. Effects of maternal 16 weeks of gestation plasma choline concentrations ⩾7.07 µM, 1 s.d. below the mean level obtained with supplementation in the previous trial, were compared to lower levels. The Attention Problems and Withdrawn Syndrome scales on Child Behavior Checklist 1½-5 were the principal outcomes. RESULTS: Higher maternal plasma choline was associated with lower mean Attention Problems percentiles in children, and for male children, with lower Withdrawn percentiles. Higher plasma choline concentrations also reduced Attention Problems percentiles for children of mothers who used cannabis during gestation as well as children of mothers who had gestational infection. CONCLUSIONS: Prenatal choline's positive associations with early childhood behaviors are found in a second, more diverse cohort. Increases in attention problems and social withdrawal in early childhood are associated with later mental illnesses including attention deficit disorder and schizophrenia. Choline concentrations in the pregnant women in this study replicate other research findings suggesting that most pregnant women do not have adequate choline in their diets.


Assuntos
Cannabis , Alucinógenos , Efeitos Tardios da Exposição Pré-Natal , Criança , Humanos , Gravidez , Masculino , Recém-Nascido , Feminino , Pré-Escolar , Colina , Desenvolvimento Infantil , Desenvolvimento Fetal , Problemas Sociais , Efeitos Tardios da Exposição Pré-Natal/epidemiologia
13.
J Am Heart Assoc ; 10(13): e020980, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34184544

RESUMO

Background High-resistance inspiratory muscle strength training (IMST) is a novel, time-efficient physical training modality. Methods and Results We performed a double-blind, randomized, sham-controlled trial to investigate whether 6 weeks of IMST (30 breaths/day, 6 days/week) improves blood pressure, endothelial function, and arterial stiffness in midlife/older adults (aged 50-79 years) with systolic blood pressure ≥120 mm Hg, while also investigating potential mechanisms and long-lasting effects. Thirty-six participants completed high-resistance IMST (75% maximal inspiratory pressure, n=18) or low-resistance sham training (15% maximal inspiratory pressure, n=18). IMST was safe, well tolerated, and had excellent adherence (≈95% of training sessions completed). Casual systolic blood pressure decreased from 135±2 mm Hg to 126±3 mm Hg (P<0.01) with IMST, which was ≈75% sustained 6 weeks after IMST (P<0.01), whereas IMST modestly decreased casual diastolic blood pressure (79±2 mm Hg to 77±2 mm Hg, P=0.03); blood pressure was unaffected by sham training (all P>0.05). Twenty-four hour systolic blood pressure was lower after IMST versus sham training (P=0.01). Brachial artery flow-mediated dilation improved ≈45% with IMST (P<0.01) but was unchanged with sham training (P=0.73). Human umbilical vein endothelial cells cultured with subject serum sampled after versus before IMST exhibited increased NO bioavailability, greater endothelial NO synthase activation, and lower reactive oxygen species bioactivity (P<0.05). IMST decreased C-reactive protein (P=0.05) and altered select circulating metabolites (targeted plasma metabolomics) associated with cardiovascular function. Neither IMST nor sham training influenced arterial stiffness (P>0.05). Conclusions High-resistance IMST is a safe, highly adherable lifestyle intervention for improving blood pressure and endothelial function in midlife/older adults with above-normal initial systolic blood pressure. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03266510.


Assuntos
Pressão Sanguínea , Exercícios Respiratórios , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipertensão/terapia , Inalação , Óxido Nítrico/metabolismo , Estresse Oxidativo , Músculos Respiratórios , Idoso , Biomarcadores/sangue , Células Cultivadas , Colorado , Método Duplo-Cego , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Hipertensão/sangue , Hipertensão/diagnóstico , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do Tratamento
14.
J Psychiatr Res ; 141: 50-56, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174557

RESUMO

Maternal gestational inflammation from infection, obesity, depression, and adverse childhood experiences negatively affects offspring cognitive development. Choline is a key nutrient in fetal brain development. We investigated whether higher maternal plasma choline concentrations have a positive association with offspring cognition, specifically processing speed, in the presence of inflammation. Forty-eight children were evaluated at 4 years of age. Processing Speed Composite Score on the Wechsler Preschool & Primary Scales of Intelligence was the principal outcome. Maternal C-reactive protein (CRP), a marker of inflammation, and choline plasma concentration had been measured at 16 weeks' gestation. Choline concentrations >7.07µM were compared to lower levels. Mothers with lower choline levels reported more depression and stress. Head circumference was larger for neonates of mothers with higher choline levels. In analyses with maternal CRP, higher maternal choline was associated with higher offspring Processing Speed Composite Scores for both sexes. For males, higher maternal choline competed with the negative association of maternal CRP on Processing Speed. Higher Processing Speed was related to the child's behavioral ratings, with fewer Withdrawn Problems on the Child Behavior Checklist 1 ½-5 years at 4 years and higher Infant Behavior Questionnaire Orienting/Regulation at 3 months of age, consistent with persistent developmental effects. Higher processing speed and decreased problems in social withdrawal are positively associated with prenatal maternal choline. Both lower processing speed and social withdrawal problems are precursors to later mental difficulties. Choline supplementation in pregnancy may mitigate effects of maternal inflammation that contribute to problems in offspring's' cognition and behavior.


Assuntos
Colina , Efeitos Tardios da Exposição Pré-Natal , Pré-Escolar , Feminino , Humanos , Inflamação , Inteligência , Masculino , Mães , Gravidez , Escalas de Wechsler
15.
Schizophr Bull ; 47(4): 886-887, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940629

RESUMO

These initial data suggest that with prenatal vitamins and choline supplements, we might decrease one risk factor associated with poorer health outcomes disproportionally affecting Black families, ie, preterm birth. Dissemination of this research fulfills the principle of Justice in the Belmont Report, to ensure that participants from different racial, ethnic and socioeconomic groups receive benefits from research directed to their specific problems.


Assuntos
Nascimento Prematuro , Negro ou Afro-Americano , Feminino , Hispânico ou Latino , Humanos , Recém-Nascido , Gravidez , Fatores de Risco
17.
Psychol Med ; 51(3): 450-459, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31787129

RESUMO

BACKGROUND: Maternal inflammation in early pregnancy has been identified epidemiologically as a prenatal pathogenic factor for the offspring's later mental illness. Early newborn manifestations of the effects of maternal inflammation on human fetal brain development are largely unknown. METHODS: Maternal infection, depression, obesity, and other factors associated with inflammation were assessed at 16 weeks gestation, along with maternal C-reactive protein (CRP), cytokines, and serum choline. Cerebral inhibition was assessed by inhibitory P50 sensory gating at 1 month of age, and infant behavior was assessed by maternal ratings at 3 months of age. RESULTS: Maternal CRP diminished the development of cerebral inhibition in newborn males but paradoxically increased inhibition in females. Similar sex-dependent effects were seen in mothers' assessment of their infant's self-regulatory behaviors at 3 months of age. Higher maternal choline levels partly mitigated the effect of CRP in male offspring. CONCLUSIONS: The male fetal-placental unit appears to be more sensitive to maternal inflammation than females. Effects are particularly marked on cerebral inhibition. Deficits in cerebral inhibition 1 month after birth, similar to those observed in several mental illnesses, including schizophrenia, indicate fetal developmental pathways that may lead to later mental illness. Deficits in early infant behavior follow. Early intervention before birth, including prenatal vitamins, folate, and choline supplements, may help prevent fetal development of pathophysiological deficits that can have life-long consequences for mental health.


Assuntos
Proteína C-Reativa/análise , Feto/metabolismo , Inflamação/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Filtro Sensorial , Encéfalo/crescimento & desenvolvimento , Colina/sangue , Feminino , Desenvolvimento Fetal , Idade Gestacional , Humanos , Lactente , Comportamento do Lactente , Recém-Nascido , Masculino , Gravidez , Complicações na Gravidez
18.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33351786

RESUMO

Computational models based on recent maps of the RBC proteome suggest that mature erythrocytes may harbor targets for common drugs. This prediction is relevant to RBC storage in the blood bank, in which the impact of small molecule drugs or other xenometabolites deriving from dietary, iatrogenic, or environmental exposures ("exposome") may alter erythrocyte energy and redox metabolism and, in so doing, affect red cell storage quality and posttransfusion efficacy. To test this prediction, here we provide a comprehensive characterization of the blood donor exposome, including the detection of common prescription and over-the-counter drugs in blood units donated by 250 healthy volunteers in the Recipient Epidemiology and Donor Evaluation Study III Red Blood Cell-Omics (REDS-III RBC-Omics) Study. Based on high-throughput drug screenings of 1366 FDA-approved drugs, we report that approximately 65% of the tested drugs had an impact on erythrocyte metabolism. Machine learning models built using metabolites as predictors were able to accurately predict drugs for several drug classes/targets (bisphosphonates, anticholinergics, calcium channel blockers, adrenergics, proton pump inhibitors, antimetabolites, selective serotonin reuptake inhibitors, and mTOR), suggesting that these drugs have a direct, conserved, and substantial impact on erythrocyte metabolism. As a proof of principle, here we show that the antacid ranitidine - though rarely detected in the blood donor population - has a strong effect on RBC markers of storage quality in vitro. We thus show that supplementation of blood units stored in bags with ranitidine could - through mechanisms involving sphingosine 1-phosphate-dependent modulation of erythrocyte glycolysis and/or direct binding to hemoglobin - improve erythrocyte metabolism and storage quality.


Assuntos
Doadores de Sangue , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Expossoma , Medicamentos sem Prescrição/efeitos adversos , Medicamentos sem Prescrição/farmacocinética , Medicamentos sob Prescrição/efeitos adversos , Medicamentos sob Prescrição/farmacocinética , Adolescente , Adulto , Idoso , Animais , Metabolismo Energético/efeitos dos fármacos , Transfusão de Eritrócitos , Feminino , Glicólise/efeitos dos fármacos , Voluntários Saudáveis , Hemoglobinas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Aprendizado de Máquina , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ranitidina/farmacologia , Adulto Jovem
19.
Schizophr Bull ; 47(4): 896-905, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33184653

RESUMO

Black Americans have increased risk for schizophrenia and other mental illnesses with prenatal origins. Prenatal choline promotes infant brain development and behavioral outcomes, but choline has not been specifically assessed in Black Americans. Pregnant women (N = 183, N = 25 Black Americans) enrolled in a study of prenatal stressors and interactions with prenatal choline. Black American women had lower 16-week gestation plasma choline than Whites. Lower choline was not related to obesity, income, or metabolic genotypes. Pregnant women in rural Uganda have higher choline levels than Black American women. Black Americans' lower choline was associated with higher hair cortisol, indicative of higher stress. Lower maternal choline was associated with offsprings' lower gestational age at birth and with decreased auditory P50 inhibition, a marker of inhibitory neuron development. Behavioral development was assessed on the Infant Behavior Questionnaire-R-SF (IBQ-R) at 3 months. Lower Black American maternal gestational choline was associated with lower infant IBQ-R Orienting/Regulation, indicating decreased attention and relation to caregivers. Additional evidence for developmental effects of choline in Black Americans comes from a randomized clinical trial of gestational phosphatidylcholine supplementation versus placebo that included 15 Black Americans. Phosphatidylcholine increased gestational age at birth and newborn P50 inhibition and decreased Social Withdrawn and Attention problems at 40 months of age in Black Americans' offspring compared to placebo. Inhibitory and behavioral deficits associated with lower prenatal choline in offspring of Black American women indicate potential developmental predispositions to later mental illnesses that might be ameliorated by prenatal choline or phosphatidylcholine supplementation.


Assuntos
Negro ou Afro-Americano/estatística & dados numéricos , Colina/análise , Idade Gestacional , Transtornos Mentais/etnologia , Efeitos Tardios da Exposição Pré-Natal/etnologia , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez
20.
JACC CardioOncol ; 2(3): 475-488, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33073250

RESUMO

BACKGROUND: Doxorubicin (DOXO) chemotherapy increases risk for cardiovascular disease in part by inducing endothelial dysfunction in conduit arteries. However, the mechanisms mediating DOXO-associated endothelial dysfunction in (intact) arteries and treatment strategies are not established. OBJECTIVES: We tested the hypothesis that DOXO impairs endothelial function in conduit arteries via excessive mitochondrial reactive oxygen species (ROS) and that these effects could be prevented by treatment with a mitochondrial-targeted antioxidant (MitoQ). METHODS: Endothelial function (endothelium-dependent dilation [EDD] to acetylcholine) and vascular mitochondrial ROS were assessed 4 weeks following administration (10 mg/kg intraperitoneal injection) of DOXO. A separate cohort of mice received chronic (4 weeks) oral supplementation with MitoQ (drinking water) for 4 weeks following DOXO. RESULTS: EDD in isolated pressurized carotid arteries was 55% lower 4 weeks following DOXO (peak EDD, DOXO: 42 ± 7% vs. sham: 94 ± 3%; p = 0.006). Vascular mitochondrial ROS was 52% higher and manganese (mitochondrial) superoxide dismutase was 70% lower after DOXO versus sham (p = 0.0008). Endothelial function was rescued by administration of the mitochondrial-targeted antioxidant, MitoQ, to the perfusate. Exposure to plasma from DOXO-treated mice increased mitochondrial ROS in cultured endothelial cells. Analyses of plasma showed differences in oxidative stress-related metabolites and a marked reduction in vascular endothelial growth factor A in DOXO mice, and restoring vascular endothelial growth factor A to sham levels normalized mitochondrial ROS in endothelial cells incubated with plasma from DOXO mice. Oral MitoQ supplementation following DOXO prevented the reduction in EDD (97 ± 1%; p = 0.002 vs. DOXO alone) by ameliorating mitochondrial ROS suppression of EDD. CONCLUSIONS: DOXO-induced endothelial dysfunction in conduit arteries is mediated by excessive mitochondrial ROS and ameliorated by mitochondrial-specific antioxidant treatment. Mitochondrial ROS is a viable therapeutic target for mitigating arterial dysfunction with DOXO. (J Am Coll Cardiol CardioOnc 2020;2:475-88) © 2020 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA