Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microorganisms ; 9(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34946027

RESUMO

Several plant extracts exhibit anti-virulence properties due to the interruption of bacterial quorum sensing (QS). However, studies on their effects at the preclinical level are scarce. Here, we used a murine model of abscess/necrosis induced by Pseudomonas aeruginosa to evaluate the anti-pathogenic efficacy of 24 plant extracts at a sub-inhibitory concentration. We analyzed their ability to inhibit QS-regulated virulence factors such as swarming, pyocyanin production, and secretion of the ExoU toxin via the type III secretion system (T3SS). Five of the seven extracts with the best anti-pathogenic activity reduced ExoU secretion, and the extracts of Diphysa americana and Hibiscus sabdariffa were identified as the most active. Therefore, the abscess/necrosis model allows identification of plant extracts that have the capacity to reduce pathogenicity of P. aeruginosa. Furthermore, we evaluated the activity of the plant extracts on Chromobacterium violaceum. T3SS (ΔescU) and QS (ΔcviI) mutant strains were assessed in both the abscess/necrosis and sepsis models. Only the ΔescU strain had lower pathogenicity in the animal models, although no activity of plant extracts was observed. These results demonstrate differences between the anti-virulence activity recorded in vitro and pathogenicity in vivo and between the roles of QS and T3S systems as virulence determinants.

2.
J Med Food ; 24(9): 934-943, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33751918

RESUMO

Hibiscus sabdariffa L. (Hs) calyxes, rich in organic acids, are included in diets in different countries. In recent years, some phytochemicals have been shown to reduce bacterial virulence at sublethal concentrations by interfering with quorum sensing (QS) systems. Therefore, in this study the antivirulence properties of Hs calyxes and two γ-lactones (hibiscus acid [HA] and its methyl ester) in Pseudomonas aeruginosa were analyzed. Acetone and methanol extracts of Hs showed anti-QS activity by inhibiting violacein production (60% to 80% with 250 µg/mL). In molecular docking analysis, the γ-lactones registered a good binding score, which suggests strong interaction with the active site of LasR protein. To verify their effect in vitro, they were isolated from Hs and evaluated in six QS-regulated phenotypes, as well as in ExoU toxin that is released by the type III secretion system (T3SS). At 500 µg/mL they reduced alkaline protease (29-52%) and elastase (15-37%) activity, biofilm formation (∼75%), and swarming (50%), but there was no effect on pyocyanin production, hemolytic activity, or type III secretion. In a mouse abscess/necrosis model, HA at sublethal concentrations (15 and 31.2 µg/mL) affected infection establishment and prevented damage and systemic spread. In conclusion, HA is the first molecule identified with antivirulence properties in Hs with the potential to prevent infections caused by P. aeruginosa.


Assuntos
Hibiscus , Pseudomonas aeruginosa , Animais , Antibacterianos , Biofilmes , Citratos , Camundongos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA