Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 17(1): 154, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30261894

RESUMO

BACKGROUND: Coffee silverskin, a by-product from coffee roasting industries, was evaluated as a feedstock for biobutanol production by acetone-butanol-ethanol fermentation. This lignocellulosic biomass contained approximately 30% total carbohydrates and 30% lignin. Coffee silverskin was subjected to autohydrolysis at 170 °C during 20 min, with a biomass-to-solvent ratio of 20%, and a subsequent enzymatic hydrolysis with commercial enzymes in order to release simple sugars. The fermentability of the hydrolysate was assessed with four solventogenic strains from the genus Clostridium. In addition, fermentation conditions were optimised via response surface methodology to improve butanol concentration in the final broth. RESULTS: The coffee silverskin hydrolysate contained 34.39 ± 2.61 g/L total sugars, which represents a sugar recovery of 34 ± 3%. It was verified that this hydrolysate was fermentable without the need of any detoxification method and that C. beijerinckii CECT 508 was the most efficient strain for butanol production, attaining final values of 4.14 ± 0.21 g/L acetone, 7.02 ± 0.27 g/L butanol and 0.25 ± 0.01 g/L ethanol, consuming 76.5 ± 0.8% sugars and reaching a butanol yield of 0.269 ± 0.008 gB/gS under optimal conditions. CONCLUSIONS: Coffee silverskin could be an adequate feedstock for butanol production in biorefineries. When working with complex matrices like lignocellulosic biomass, it is essential to select an adequate bacterial strain and to optimize its fermentation conditions (such as pH, temperature or CaCO3 concentration).


Assuntos
Butanóis/síntese química , Carboidratos/química , Café/química , Fermentação
2.
N Biotechnol ; 46: 54-60, 2018 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044962

RESUMO

Potato peel from a snack factory was assessed as possible feedstock for biobutanol production. This lignocellulosic biomass was subjected to various physicochemical pretreatments (autohydrolysis and hydrolysis with dilute acids, alkalis, organic solvents or surfactants) under different conditions of time, temperature and reagent concentrations, in order to favour the release of sugars and reduce the generation of fermentation inhibitors. Thereafter, the pretreated potato peel was treated enzymatically to complete the hydrolysis. Autohydrolysis at 140 °C and 56 min was the most effective pretreatment, releasing 37.9 ± 2.99 g/L sugars from an aqueous mixture containing 10% (w/w) potato peel (sugar recovery efficiency 55 ± 13%). The fermentability of the hydrolysates was checked with six strains of Clostridium beijerinckii, C. acetobutylicum, C. saccharobutylicum and C. saccaroperbutylacetonicum. C. saccharobutylicum DSM 13864 produced 2.1 g/L acetone, 7.6 g/L butanol and 0.6 g/L ethanol in 96 h (0.186 gB/gS), whereas C. saccharoperbutylacetonicum DSM 2152 generated 1.8 g/L acetone, 8.1 g/L butanol and 1.0 g/L ethanol in 120 h (0.203 gB/gS). Detoxification steps of the hydrolysate before fermentation were not necessary. Potato peel may be an interesting feedstock for biorefineries focused on butanol production.


Assuntos
Butanóis/metabolismo , Butanóis/provisão & distribuição , Resíduos Industriais , Lanches , Solanum tuberosum/metabolismo , Butanóis/química , Clostridium/metabolismo , Fermentação , Hidrólise , Solanum tuberosum/química
3.
PLoS One ; 13(12): e0210002, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596755

RESUMO

Eight yeast strains of the genera Saccharomyces and Kluyveromyces were screened to ferment high lactose-load cheese whey permeate (CWP) (>130 g/L lactose) without nutrient supplementation. The fermentation conditions (temperature, pH and time) were optimized to maximize the fermentation performance (ethanol titer, ethanol yield and lactose consumption) for the two preselected strains, K. marxianus DSM 5422 and S. cerevisiae Ethanol Red, using a response surface methodology (RSM). Under optimized conditions, K. marxianus DSM 5422 attained ethanol titers of 6% (v/v) in only 44 h. Moreover, the feasibility of immobilizing this strain on four different inorganic supports (plastic, glass and Tygon silicone Raschig rings and alumina beads) was assessed. Glass Raschig rings and alumina beads showed a more stable performance over time, yielding ethanol titers of 60 g/L during 1,000 hours, which remarkably reduces yeast cultivation costs. Results demonstrate the feasibility of using CWP for successful ethanol production in a simple and economical process, which represents an attractive alternative for waste treatment in dairy industries.


Assuntos
Células Imobilizadas/metabolismo , Queijo , Etanol/metabolismo , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Soro do Leite/química , Kluyveromyces/genética , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA