RESUMO
Panax quinquefolius L. is an important medicinal plant, and flavonoids are among its main secondary metabolites. The R2R3-MYB transcription factor plays an irreplaceable role in plant growth, development, and secondary metabolism. In our study, we identified 159 R2R3-MYBs and analyzed their physical and chemical properties in P. quinquefolius. The protein length of 159 PqMYBs varied from 107 to 1050 amino acids. The molecular weight ranged from 12.21 to 116.44 kDa. The isoelectric point was between 4.57 and 10.34. We constructed a phylogenetic tree of P. quinquefolius and Arabidopsis thaliana R2R3-MYB family members, and PqMYB members were divided into 33 subgroups. Transcriptome data analysis showed that the expression patterns of PqMYBs in root, leaf, and flower were significantly different. Following the MeJA treatment of seedlings, five candidate PqMYB genes demonstrated a response. A correlation analysis of PqMYBs and candidate flavonoid pathway genes showed that PqMYB2, PqMYB46, and PqMYB72 had correlation coefficients that were higher than 0.8 with PqCHS, PqANS4, and PqCCoAMT10, respectively. Furthermore, a transient expression assay confirmed that the three PqMYBs were localized in the nucleus. We speculated that these three PqMYBs were related to flavonoid biosynthesis in P. quinquefolius. These results provided a theoretical basis and a new perspective for further understanding the R2R3-MYB gene family and the biosynthesis mechanism of secondary metabolites in P. quinquefolius.
Assuntos
Arabidopsis , Genes myb , Fatores de Transcrição/genética , Filogenia , Metabolismo Secundário , Arabidopsis/genética , FlavonoidesRESUMO
Panax ginseng C. A. Meyer (Ginseng) is one of the most used traditional Chinese herbal medicines, with its roots being used as the main common medicinal parts; its therapeutic potential has garnered significant attention. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) is a family of early auxin-responsive genes capable of regulating root development in plants through the auxin signaling pathway. In the present study, 84 Aux/IAA genes were identified from the ginseng genome and their complexity and diversity were determined through their protein domains, phylogenetic relationships, gene structures, and cis-acting element predictions. Phylogenetic analyses classified PgIAA into six subgroups, with members in the same group showing greater sequence similarity. Analyses of interspecific collinearity suggest that segmental duplications likely drove the evolution of PgIAA genes, followed by purifying selection. An analysis of cis-regulatory elements suggested that PgIAA family genes may be involved in the regulation of plant hormones. RNA-seq data show that the expression pattern of Aux/IAA genes in Ginseng is tissue-specific, and PgIAA02 and PgIAA36 are specifically highly expressed in lateral, fibrous, and arm roots, suggesting their potential function in root development. The PgIAA02 overexpression lines exhibited an inhibition of lateral root growth in Ginseng. In addition, yeast two-hybrid and subcellular localization experiments showed that PgIAA02 interacted with PgARF22/PgARF36 (ARF: auxin response factor) in the nucleus and participated in the biological process of root development. The above results lay the foundation for an in-depth study of Aux/IAA and provide preliminary information for further research on the role of the Aux/IAA gene family in the root development of Ginseng.
Assuntos
Panax , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Panax/genética , Panax/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de PlantasRESUMO
The genus Salvia L. (Lamiaceae) comprises myriad distinct medicinal herbs, with terpenoids as one of their major active chemical groups. Abietane-type diterpenoids (ATDs), such as tanshinones and carnosic acids, are specific to Salvia and exhibit taxonomic chemical diversity among lineages. To elucidate how ATD chemical diversity evolved, we carried out large-scale metabolic and phylogenetic analyses of 71 Salvia species, combined with enzyme function, ancestral sequence and chemical trait reconstruction, and comparative genomics experiments. This integrated approach showed that the lineage-wide ATD diversities in Salvia were induced by differences in the oxidation of the terpenoid skeleton at C-20, which was caused by the functional divergence of the cytochrome P450 subfamily CYP76AK. These findings present a unique pattern of chemical diversity in plants that was shaped by the loss of enzyme activity and associated catalytic pathways.
Assuntos
Diterpenos , Salvia , Salvia/genética , Salvia/metabolismo , Abietanos , Filogenia , Terpenos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismoRESUMO
BACKGROUND: Panax ginseng is a perennial herb and one of the most widely used traditional medicines in China. During its long growth period, it is affected by various environmental factors. Past studies have shown that growth-regulating factors (GRFs) and GRF-interacting factors (GIFs) are involved in regulating plant growth and development, responding to environmental stress, and responding to the induction of exogenous hormones. However, GRF and GIF transcription factors in ginseng have not been reported. RESULTS: In this study, 20 GRF gene members of ginseng were systematically identified and found to be distributed on 13 chromosomes. The ginseng GIF gene family has only ten members, which are distributed on ten chromosomes. Phylogenetic analysis divided these PgGRFs into six clades and PgGIFs into two clades. In total, 18 of the 20 PgGRFs and eight of the ten PgGIFs are segmental duplications. Most PgGRF and PgGIF gene promoters contain some hormone- and stress- related cis-regulatory elements. Based on the available public RNA-Seq data, the expression patterns of PgGRF and PgGIF genes were analysed from 14 different tissues. The responses of the PgGRF gene to different hormones (6-BA, ABA, GA3, IAA) and abiotic stresses (cold, heat, drought, and salt) were studied. The expression of the PgGRF gene was significantly upregulated under GA3 induction and three weeks of heat treatment. The expression level of the PgGIF gene changed only slightly after one week of heat treatment. CONCLUSIONS: The results of this study may be helpful for further study of the function of PgGRF and PgGIF genes and lay a foundation for further study of their role in the growth and development of Panax ginseng.
Assuntos
Panax , Filogenia , Panax/genética , Panax/metabolismo , Fatores de Transcrição/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Hormônios , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão GênicaRESUMO
Rusty root rot is a severe disease in ginseng (Panax ginseng C. A. Mey) production caused by Ilyonectria robusta. The severity of the disease may be related to the residual ginsenosides in soil. In order to elucidate the response mechanism between Rg1 treatment and the occurrence of ginseng rust, we performed growth, reproduction and transcriptome analysis on treated Rg1. The results showed that Rg1 significantly promoted the mycelial growth and sporulation compared with the control, and aggravated the disease symptoms of Panax ginseng. A total of 6708 transcripts out of 213 131 annotated genes identified from global transcriptomic analysis were differentially expressed in Ilyonectria robusta grown during the Rg1 treatment. These genes were found to be related to the carbon-nitrogen metabolism, transport and assimilation. Many of these genes were also associated with pathogenicity based on the Phi-base database. Several transcription factors were related to specific biological processes, such as nitrogen utilization. The current results revealed that Rg1 played a major role in the development of rusty root rot by promoting fungal cell growth and affected the expression of genes required for pathogenesis. Rg1 could aggravate the invasion of Ilyonectria robusta on ginseng root, which preliminarily revealed the reason for the aggravation of rusty root rot in ginseng soil-borne.
Assuntos
Basidiomycota , Ginsenosídeos , Panax , Basidiomycota/metabolismo , Carbono , Ginsenosídeos/farmacologia , Hypocreales , Nitrogênio , Panax/metabolismo , Panax/microbiologia , Raízes de Plantas/microbiologia , Solo , Fatores de Transcrição , TranscriptomaRESUMO
Panax quinquefolium is one of the most common medicinal plants worldwide. Ginsenosides are the major pharmaceutical components in P. quinquefolium. The biosynthesis of ginsenosides in different tissues of P. quinquefolium remained largely unknown. In the current study, an integrative method of transcriptome and metabolome analysis was used to elucidate the ginsenosides biosynthesis pathways in different tissues of P. quinquefolium. Herein, 22 ginsenosides in roots, leaves, and flower buds showed uneven distribution patterns. A comprehensive P. quinquefolium transcriptome was generated through single molecular real-time (SMRT) and second-generation sequencing (NGS) technologies, which revealed the ginsenoside pathway genes and UDP-glycosyltransferases (UGT) family genes explicitly expressed in roots, leaves, and flower buds. The weighted gene co-expression network analysis (WGCNA) of ginsenoside biosynthesis genes, UGT genes and ginsenoside contents indicated that three UGT genes were positively correlated to pseudoginsenoside F11, notoginsenoside R1, notoginsenoside R2 and pseudoginsenoside RT5. These results provide insights into ginsenoside biosynthesis in different tissues ofP. quinquefolium.
Assuntos
Ginsenosídeos , Panax , Plantas Medicinais , Raízes de Plantas , TranscriptomaRESUMO
BACKGROUND: Panax ginseng is a well-known medicinal plant worldwide. As an herbal medicine, ginseng is also known for its long lifecycle, which can reach several decades. WRKY proteins play regulatory roles in many aspects of biological processes in plants, such as responses to biotic or abiotic stress, plant development, and adaptation to environmental challenges. Genome-wide analyses of WRKY genes in P. ginseng have not been reported. RESULTS: In this study, 137 PgWRKY genes were identified from the ginseng genome. Phylogenetic analysis showed that the PgWRKYs could be clustered into three primary groups and five subgroups. Most of the PgWRKY gene promoters contained several kinds of hormone- and stress-related cis-regulatory elements. The expression patterns of PgWRKY genes in 14 different tissues were analyzed based on the available public RNA-seq data. The responses of the PgWRKY genes to heat, cold, salt and drought treatment were also investigated. Most of the PgWRKY genes were expressed differently after heat treatment, and expression trends changed significantly under drought and cold treatment but only slightly under salt treatment. The coexpression analysis of PgWRKY genes with the ginsenoside biosynthesis pathway genes identified 11 PgWRKYs that may have a potential regulatory role in the biosynthesis process of ginsenoside. CONCLUSIONS: This work provides insights into the evolution, modulation and distribution of the WRKY gene family in ginseng and extends our knowledge of the molecular basis along with modulatory mechanisms of WRKY transcription factors in ginsenoside biosynthesis.
Assuntos
Panax , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Panax/genética , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Successive evidence has established that maltol, a flavor-enhancing agent, could provide resistance to oxidative stress-induced tissue injury in various animal models though its benefits for aging-induced liver and kidney injuries are still undetermined. In the present work, for demonstrating maltol's ameliorative effect and probable mechanism against aging-induced liver and kidney injuries, D-galactose (D-Gal)-induced animal in vivo and HEK293 cells in vitro models were established and results demonstrated that long-term D-Gal treatment increases the accumulation of advanced glycation end products (AGEs) in liver and kidney tissues, mitigates cell viability, and arrests the cycle. Interestingly, 4-weeks maltol treatment at 50 and 100 mg/kg activated aging-associated proteins including p53, p21, and p16 followed by inhibiting malondialdehyde (MDA)'s over-production and increasing the levels of antioxidant enzymes. Therefore, decreases in cytochrome P450 E1 (CYP2E1) and 4-hydroxydecene (4-HNE)'s immunofluorescence expression levels are confirmed. Furthermore, maltol improved oxidative stress injury by activating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. In conclusion, the purpose of the present study was to estimate the mechanistic insights into maltol's role as an antioxidant in liver and kidney cell senescence and injury, which will reflect potential of therapeutic strategy for antiaging and aging-related disease treatment.
Assuntos
Galactose , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Envelhecimento , Animais , Galactose/efeitos adversos , Células HEK293 , Humanos , Rim/metabolismo , Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Schisandra chinensis Turcz. (Baill.) is a plant species with fruits that have been well known in Far Eastern medicine for a long time. It has traditionally been used as a stimulating and fortifying agent in cases of physical exhaustion and to inhibit fatigue. The major bioactive compounds found in S. chinensis are lignans with a dibenzocyclooctadiene skeleton, but little is known about their biosynthesis in plants. S. chinensis is the ideal medicinal plant for studying the biosynthesis of lignans, especially the dibenzocyclooctadiene skeleton. Genomic information for this important herbal plant is unavailable. To better understand the lignan biosynthesis pathway, we generated transcriptome sequences from the fruit during ripening and performed de novo sequence assembly, yielding 136 843 unique transcripts with N50 of 1778 bp. Putative functions could be assigned to 41 824 transcripts (51.57%) based on BLAST searches against annotation databases including GO (Gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes). Furthermore, 22 candidate cytochrome P450 genes and 15 candidate dirigent proteins genes that were most likely involved in the lignan biosynthesis pathway were discovered based on transcriptome sequencing of S. chinensis. The genomic data obtained from S. chinensis, especially the identification of putative genes involved in the lignan biosynthesis pathway, will facilitate our understanding of lignan biosynthesis at the molecular level. The lignan metabolite profiles were analyzed by metabolomes, the accumulation patterns of 30 metabolites involved in the lignan pathway were studied. Co-expression network of lignan contents and transcriptional changes showed 355 strong correlations (correlation coefficient, R2 > 0.9) between 21 compounds and 153 transcripts. Furthermore, the comprehensive analysis and characterization of the genes involved in lignan pathways and the metabolite profiles of lignans are expected to provide better insight regarding the diversity of the chemical composition, synthetic characteristics, and regulatory mechanisms of this medical herb.
Assuntos
Ciclo-Octanos/metabolismo , Lignanas/química , Plantas Medicinais/química , Plantas Medicinais/genética , Schisandra/química , Schisandra/genética , Vias Biossintéticas , Ciclo-Octanos/química , Frutas , Ontologia Genética , Metaboloma , TranscriptomaRESUMO
This paper took Qinghai Province as the research object, and constructed 20 secondary indicators of the two subsystems of Qinghai Tibetan medicine industry competitiveness and regional economic development. Drawing on the coupling coordination model, we empirically analyzed the coupling coordination degree between the Tibetan medicine industry competitiveness and regional economic development in Qinghai Province from 2008 to 2017. The results indicated that the development of Tibetan medicine industry in Qinghai lagged behind the development of regional economy, but the coupling coordination degree between the two showed an overall upward trend, which was divided into two stages. One was the maladjustment phase from 2008 to 2012, while the other was the coordination period from 2013 to 2017. Both the two subsystems were currently in primary coordination.
RESUMO
Wuzhi capsule (WZC) is a preparation of an ethanol herbal extract of Schisandra sphenanthera (Nan-Wuweizi), with its main active ingredients that include schisandrin, schizandrol B, schisantherin A, schisanhenol, and deoxyschizandrin. WZC and tacrolimus are often coadministered for the treatment of drug-induced hepatitis in organ transplant recipients in China. Recently, it was reported that WZC could significantly increase the blood concentration of tacrolimus. The purpose of this study was to investigate whether and how WZC affects the pharmacokinetics of tacrolimus in rats. Liquid chromatography-tandem mass spectrometry method was used to determine the plasma concentration of tacrolimus. The results showed that WZC increased the mean plasma concentration of tacrolimus. Compared with administration of tacrolimus alone [maximum plasma concentration (C(max)), 18.87 ± 10.29 ng/ml; area under the plasma concentration-time curve from time zero to last sampling time (AUC(0ât)), 40.98 ± 37.07 ng h/ml], a single intragastric administered dose of WZC increased the pharmacokinetic parameters of tacrolimus (C(max), 59.42 ± 30.32 ng/ml; AUC(0ât), 239.71 ± 28.86 ng h/ml) by 5-fold in rat plasma. After pretreatment with WZC for 12 days, there were still significant increases in AUC(0ât) (from 40.98 ± 37.07 to 89.21 ± 26.39 ng h/ml; P < 0.05) and C(max) (from 18.87 ± 10.29 to 43.16 ± 10.61 ng/ml; P < 0.05) of tacrolimus, compared with oral of tacrolimus alone, suggesting that WZC increased the exposure of tacrolimus by one or more mechanisms. The increase in tacrolimus C(max) by WZC was dose-dependent. The effect of WZC on tacrolimus AUC(0ât) also increased with dose, with a maximal effect observed at 450 mg/kg (825.34 ng h/ml). No further increases in tacrolimus AUC(0ât) were observed at WZC dose above 450 mg/kg. It is suggested that, because of the effect of WZC on the pharmacokinetics of tacrolimus, the herb-drug interaction between WZC and tacrolimus should be taken into consideration in clinical practice.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Interações Ervas-Drogas , Imunossupressores/farmacocinética , Medicina Tradicional Chinesa , Tacrolimo/farmacocinética , Animais , Cápsulas , Inibidores do Citocromo P-450 CYP3A , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
In plants, stomata play a pivotal role in the regulation of gas exchange and are distributed throughout the aerial epidermis. SDD1, a gene isolated from Arabidopsis thaliana has been demonstrated to specialize in stomatal density and distribution. In our present study, a comprehensive survey of global gene expression performed by using an A. thaliana whole genome Affymetrix gene chip revealed SDD1 tends to be significantly lower in tetraploid Isatis indigotica than in diploid ones. To intensively investigate different SDD1 expression in response to polyploidy, a full-length cDNA clone (IiSDD1) encoding SDD1 was isolated from the traditional Chinese medicinal herb I. indigotica cDNA library. IiSDD1 shared a high level of identity with that from A. thaliana, containing some basic features of subtilases: D, H and S regions, as well as a substrate-binding site. Real-time quantitative PCR analysis indicated that IiSDD1 was constitutively expressed in all tested tissues, including roots, stems and leaves, both in tetraploid and diploid I. indigotica, and with the highest expression in leaves. In addition, IiSDD1 was also found to be down-regulated by signalling molecules for plant defence responses, such as abscisic acid (100 microM) and gibberellin (100 mg/L), as well as by environmental stresses including salt, darkness, coldness and drought. Our study, for the first time, indicates SDD1 participates not only in the defense/stress responsive pathways, but also probably involves in plants polyploidy evolution.