Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35617179

RESUMO

Humans have the ability to appreciate and create music. However, why and how humans have this distinctive ability to perceive music remains unclear. Additionally, the investigation of the innate perceiving skill in humans is compounded by the fact that we have been actively and passively exposed to auditory stimuli or have systematically learnt music after birth. Therefore, to explore the innate musical perceiving ability, infants with preterm birth may be the most suitable population. In this study, the auditory brain networks were explored using dynamic functional connectivity-based reliable component analysis (RCA) in preterm infants during music listening. The brain activation was captured by portable functional near-infrared spectroscopy (fNIRS) to simulate a natural environment for preterm infants. The components with the maximum inter-subject correlation were extracted. The generated spatial filters identified the shared spatial structural features of functional brain connectivity across subjects during listening to the common music, exhibiting a functional synchronization between the right temporal region and the frontal and motor cortex, and synchronization between the bilateral temporal regions. The specific pattern is responsible for the functions involving music comprehension, emotion generation, language processing, memory, and sensory. The fluctuation of the extracted components and the phase variation demonstrates the interactions between the extracted brain networks to encode musical information. These results are critically important for our understanding of the underlying mechanisms of the innate perceiving skills at early ages of human during naturalistic music listening.


Assuntos
Música , Nascimento Prematuro , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos
2.
Front Neurol ; 12: 649340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650500

RESUMO

Music contains substantial contents that humans can perceive and thus has the capability to evoke positive emotions. Even though neonatal intensive care units (NICUs) can provide preterm infants a developmental environment, they still cannot fully simulate the environment in the womb. The reduced maternal care would increase stress levels in premature infants. Fortunately, music intervention has been proved that it can improve the NICU environment, such as stabilize the heart rate and the respiratory rate, reduce the incidence of apnea, and improve feeding. However, the effects of music therapy on the brain development of preterm infants need to be further investigated. In this paper, we evaluated the influence of short-term music therapy on the brain functions of preterm infants measured by functional near-infrared spectroscopy (fNIRS). We began by investigating how premature babies perceive structural information of music by calculating the correlations between music features and fNIRS signals. Then, the influences of short-term music therapy on brain functions were evaluated by comparing the resting-state functional connectivity before and after the short-term music therapy. The results show that distinct brain regions are responsible for processing corresponding musical features, indicating that preterm infants have the capability to process the complex musical content. However, the results of network analysis show that short-term music intervention is insufficient to cause the changes in cerebral functional connectivity. Therefore, long-term music therapy may be required to achieve the deserved effects on brain functional connectivity.

3.
Acta Biomater ; 88: 392-405, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753941

RESUMO

Benign prostatic hyperplasia (BPH) patients experience complications after surgery. We studied oxidative stress scavenging by porous Se@SiO2 nanospheres in prostatic urethra wound healing after transurethral resection of the prostate (TURP). Beagle dogs were randomly distributed into two groups after establishing TURP models. Wound recovery and oxidative stress levels were evaluated. Re-epithelialization and the macrophage distribution at the wound site were assessed by histology. The mechanism by which porous Se@SiO2 nanospheres regulated macrophage polarization was investigated by qRT-PCR, western blotting, flow cytometry, immunofluorescence and dual luciferase reporter gene assays. Our results demonstrated that Porous Se@SiO2 nanosphere-coated catheters advance re-epithelization of the prostatic urethra, accelerating wound healing in beagle dogs after TURP, and improve the antioxidant capacity to inhibit oxidative stress and induced an M2 phenotype transition of macrophages at the wound. By restraining the function of reactive oxygen species (ROS), porous Se@SiO2 nanospheres downregulated Ikk, IκB and p65 phosphorylation to block the downstream NF-κB pathway in macrophages in vitro. Since activation of NF-κB signaling cascades drives macrophage polarization, porous Se@SiO2 nanospheres promoted macrophage phenotype conversion from M1 to M2. Our findings suggest that porous Se@SiO2 nanosphere-coated catheters promote postoperative wound recovery in the prostatic urethra by promoting macrophage polarization toward the M2 phenotype through suppression of the ROS-NF-κB pathway, attenuating the inflammatory response. STATEMENT OF SIGNIFICANCE: The inability to effectively control post-operative inflammatory responses after surgical treatment of benign prostatic hyperplasia (BPH) remains a challenge to researchers and surgeons, as it can lead to indirect cell death and ultimately delay wound healing. Macrophages at the wound site work as pivotal regulators of local inflammatory response. Here, we designed and produced a new type of catheter with a coating of porous Se@SiO2 nanosphere and demonstrated its role in promoting prostatic urethra wound repair by shifting macrophage polarization toward the anti-inflammatory M2 phenotype via suppressing ROS-NF-κB pathway. These results indicate that the use of porous Se@SiO2 nanosphere-coated catheter may provide a therapeutic strategy for postoperative complications during prostatic urethra wound healing to improve patient quality of life.


Assuntos
Catéteres , Materiais Revestidos Biocompatíveis/farmacologia , Macrófagos/patologia , Nanosferas/química , Transdução de Sinais , Dióxido de Silício/química , Uretra/patologia , Cicatrização/efeitos dos fármacos , Animais , Polaridade Celular , Cães , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , NF-kappa B/metabolismo , Nanosferas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Porosidade , Próstata/patologia , Próstata/cirurgia , Reepitelização/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Selênio/química , Células THP-1 , Ressecção Transuretral da Próstata , Uretra/efeitos dos fármacos
4.
Int J Nanomedicine ; 13: 1809-1818, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29606872

RESUMO

BACKGROUND: Methylprednisolone (MPS) is an important drug used in therapy of many diseases. However, osteonecrosis of the femoral head is a serious damage in the MPS treatment. Thus, it is imperative to develop new drugs to prevent the serious side effect of MPS. METHODS: The potential interferences Se@SiO2 nanocomposites may have to the therapeutic effect of methylprednisolone (MPS) were evaluated by classical therapeutic effect index of acute respiratory distress syndrome (ARDS), such as wet-to-dry weight ratio, inflammatory factors IL-1ß and TNF-α. And oxidative stress species (ROS) index like superoxide dismutase (SOD) and glutathione (GSH) were tested. Then, the protection effects of Se@SiO2 have in osteonecrosis of the femoral head (ONFH) were evaluated by micro CT, histologic analysis and Western-blot analysis. RESULTS: In the present study, we found that in the rat model of ARDS, Se@SiO2 nanocomposites induced SOD and GSH indirectly to reduce ROS damage. The wet-to-dry weight ratio of lung was significantly decreased after MPS treatment compared with the control group, whereas the Se@SiO2 did not affect the reduced wet-to-dry weight ratio of MPS. Se@SiO2 also did not impair the effect of MPS on the reduction of inflammatory factors IL-1ß and TNF-α, and on the alleviation of structural destruction. Furthermore, micro CT and histologic analysis confirmed that Se@SiO2 significantly alleviate MPS-induced destruction of femoral head. Moreover, compared with MPS group, Se@SiO2 could increase collagen II and aggrecan, and reduce the IL-1ß level in the cartilage of femoral head. In addition, the biosafety of Se@SiO2 in vitro and in vivo were supported by cell proliferation assay and histologic analysis of main organs from rat models. CONCLUSION: Se@SiO2 nanocomposites have a protective effect in MPS-induced ONFH without influence on the therapeutic activity of MPS, suggesting the potential as effective drugs to avoid ONFH in MPS therapy.


Assuntos
Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/terapia , Metilprednisolona/efeitos adversos , Nanocompostos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Selênio/uso terapêutico , Dióxido de Silício/uso terapêutico , Animais , Linhagem Celular , Modelos Animais de Doenças , Necrose da Cabeça do Fêmur/patologia , Masculino , Nanocompostos/química , Nanocompostos/ultraestrutura , Porosidade , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/tratamento farmacológico , Dióxido de Silício/farmacologia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA