Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt E): 113605, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660567

RESUMO

The mechanism of interaction between selenite, a toxic substance, and the microbial community in wastewater is still not well understood. Herein, nine sequencing biofilm batch reactors were used to systematically investigate the response of the microbial community to the continuous selenite stress. The results showed that selenite affected the reactor performance and reduced the biofilm mass. Also, it increased the proportion of the living cells, and changed the protein and polysaccharide composition of the biofilm as well as cellular secretions. Selenite facilitated the removal of NO3-N, according to water-quality and bioinformatics analyses. As such, the selenite was converted into selenium nanoparticles. α-diversity analysis further revealed that 20 µM selenite enhanced the microbial community resilience, while 200 µM selenite had the reverse effect. Community composition analysis showed that Variovorax, Rhizobium, and Simkania had positive correlations with selenite (P < 0.05). Functional prediction suggested that selenite changed the C, N, and S cycle functions. Furthermore, determinism dominated the community assembly process, and the deterministic proportion increased with the increase of selenite concentration. Network analysis showed that selenite improved the stability and positive correlation ratio of the overall microbial network, and accelerated the communication between microorganisms. However, when compared with the 20 µM selenite, the 200 µM selenite boosted the competition and parasitism/predation among microorganisms. Low-abundance genera played a key role in the network of selenite-reducing microbial community. In addition, under selenite stress, biofilm network exhibited better stability and faster information exchange than suspended network, and the positive association between biofilm and suspended microorganisms increased. All in all, this research sheds light on the interaction between selenite and microbial community, as well as provides crucial information on selenium-containing wastewater.


Assuntos
Microbiota , Selênio , Biofilmes , Reatores Biológicos , Ácido Selenioso , Águas Residuárias
2.
Environ Sci Pollut Res Int ; 29(40): 61512-61521, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35445301

RESUMO

With the wide application of selenium nanoparticles (SeNPs) in pharmaceutical fields, the toxicity assessment is of great significance. In this study, zebrafish were selected as model organisms to compare the toxicity of SeNPs derived from biological and chemical methods. The results showed that the size of bio-SeNPs was about 5-fold bigger than chem-SeNPs. When exposed to SeNPs for 96 h, LC50 of bio-SeNPs and chem-SeNPs was 1.668 mg/L and 0.699 mg/L, respectively. Compared with the control, the results showed a significant increase in oxidative toxicity index (P < 0.05), such as glutathione (GSH), superoxide dismutase (SOD) of the liver, and gill in SeNPs-treated group. The neurotoxicity index, such as acetylcholinesterase (AchE) and Na+-K+-ATP enzyme activity, was significantly decreased both in the liver and gill (P < 0.05). It was found that the toxicity of bio-SeNPs to the liver and gill of zebrafish was lower than chem-SeNPs and the toxicity to the liver was higher than gill. In this study, the toxicity of chem-SeNPs and bio-SeNPs to the target organs of zebrafish were systematically evaluated, which provided the basis for the safe application of SeNPs synthesized by different pathways.


Assuntos
Nanopartículas , Selênio , Acetilcolinesterase/metabolismo , Animais , Brânquias/metabolismo , Glutationa/metabolismo , Fígado/metabolismo , Nanopartículas/química , Nanopartículas/toxicidade , Estresse Oxidativo , Preparações Farmacêuticas/metabolismo , Selênio/metabolismo , Peixe-Zebra/metabolismo
3.
Sci Total Environ ; 809: 151163, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699821

RESUMO

The treatment and disposal of residual activated sludge is a worldwide problem and the research on its reuse is still only in the earliest stages. Selenite is a toxic pollutant, while selenium nanoparticles (SeNPs) are environmentally friendly and have promising application prospects. At present, the reduction mechanism of selenite under the complex system is still poorly understood. In order to explore the mechanism of SeNPs synthesis by activated sludge resource utilization, SeNPs were synthesized by activated sludge extracts of domestic sewage (DSeNPs) and coking sewage (CSeNPs), respectively. The synthesis process, zeta potential and morphology size of SeNPs were changed by pH value, extract concentration and extract composition. Under the same synthesis conditions, the morphologies of DSeNPs and CSeNPs were mainly spherical and pseudo-spherical, while CSeNPs also contained pseudo-rod shape particles. The sizes and crystal grains of CSeNPs were smaller than those of DSeNPs. Compared with DSeNPs, a specific protein (~35 kDa) was found on the surface of CSeNPs using SDS-PAGE. By analyzing the fluorescence images of the two SeNPs, it was found that the relative contents of proteins, α-d-glucopyranose polysaccharides, and ß-d-glucopyranose polysaccharides on their surfaces were obviously different (P < 0.05). The present study demonstrated that proteins, polysaccharides, humic-like and fulvic acid-like substances cooperated in the formation and stabilization of SeNPs. Furthermore, CSeNPs (bandgap: 1.68 eV) had more desirable photocatalytic performance than DSeNPs (bandgap: 1.84 eV). Under the light condition, CSeNPs could degrade Rhodamine B faster without adding hydrogen peroxide. This experiment provided a new insight into the resource utilization of activated sludge and a reference for the synthesis of nanometer selenium with excellent performance.


Assuntos
Nanopartículas , Selênio , Polissacarídeos , Ácido Selenioso , Esgotos
4.
Environ Res ; 194: 110630, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345899

RESUMO

Selenium nanoparticles (SeNPs) have attracted great interest as a potential antimicrobial agent. However, there is limited research on the antibacterial activity and possible mechanisms of biosynthesized SeNPs. In this study, spherical bio-SeNPs with an average size of 120 nm were synthesized by strain Providencia sp. DCX. The SeNPs were further applied to investigate the antibacterial properties of model bacteria, including Gram-positive (Staphylococcus aureus, Bacillus cereus and Bacillus subtilis) and Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Vibrio parahemolyticus). The biosynthesized SeNPs demonstrated strong inhibition activity against the growth of these pathogens. When treated with 500 mg/L SeNPs, most of the tested bacteria were destructed within 12 h, among which the mortality rates of Gram-negative bacteria were much better. The leakage tests illustrated that there existed more proteins and polysaccharides outside the cells after reacted with bio-SeNPs. It was indicated that the leakages of proteins and polysaccharides were caused by permeability changes of membranes and the disruption of cell walls. And the change of reactive oxygen species (ROS) intensity indicated that oxidative damage may play the significant role in the antibacterial processes. The results showed that several bacteria could be effectively inhibited and destructed, suggesting the potential of using the biosynthesized SeNPs as antibacterial agents for bacterial infectious diseases.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Selênio , Antibacterianos/farmacologia , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Providencia , Selênio/farmacologia
5.
Immunopharmacol Immunotoxicol ; 41(1): 86-94, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30604645

RESUMO

Background: Accumulating evidence suggests that inflammation is a contributor to the cause and progression of neurodegenerative disease, such as Alzheimer's disease (AD) and Parkinson disease (PD). However, the exact mechanisms of neuroinflammation are still unclear. Here, we discussed the potential mechanisms of lipopolysaccharide (LPS)-induced brain injury via NR2B antagonists (Ro25-6981) treatment in mice. Methods: Neuroinflammation was induced in mice by virtue of LPS (1 mg/kg) by intraperitoneal injection. Immunoprecipitation was performed to measure the assembly of NR2B-calmodulin dependent protein kinase II (CaMKII)-Postsynaptic density protein 95 (PSD95) signal module in the hippocampus and frontal cortex. Nissl's staining was employed to access neuron injury in the brain. Results: Data demonstrated that LPS could induce neuron damage, and promote the assembly of NR2B-CaMKII-PSD95 signal module and increase the expression of phosphorylated CaMKII and c-Jun N-terminal kinase (JNK) in the frontal cortex and hippocampus. However, NR2B antagonists could protect neuron injury against LPS-induced inflammation, inhibit the assembly of NR2B-CaMKII-PSD95 signal module and decrease the level of phosphorylated CaMKII and JNKs in mice. Conclusions: These findings indicated that the assembly of NR2B-CaMKII-PSD95 signal module is related to LPS-induced neuroinflammation, NR2B plays a key role in the assembly of NR2B-CaMKII-PSD95 signal module and NR2B antagonists could alleviate LPS-related inflammation through the reduced assembly of NR2B-CaMKII-PSD95 signal module in frontal cortex and hippocampus.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Fenóis/farmacologia , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Lobo Frontal/imunologia , Lobo Frontal/metabolismo , Hipocampo/imunologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais
6.
Medicine (Baltimore) ; 97(39): e12421, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278520

RESUMO

OBJECTIVE: To explore the effect of ginkgo biloba extract (EGb) as an adjunctive treatment of elderly patients with depression and the effect on the expression of serum S100B. METHODS: 136 elderly patients with depression were divided into EGb +  citalopram (Cit) group and Cit group equally. Efficacy was evaluated by Hamilton Depression Rating Scale (HAMD). Wisconsin Card Classification Test (WCST) was used to evaluate cognitive function. Serum S100B expression was measured with ELISA. The relationship of S100B with HAMD, Hamilton Anxiety Scale (HAMA) score, and WCST results was evaluated subsequently. RESULTS: The time of onset of efficacy was significantly shorter in EGb + Cit group. There were significant differences in HAMD and HAMA scores after treatment than before treatment between groups (all P < .05). After treatment, total number of WCST test, the number of continuous errors and non-persistent errors in both groups were less than those before treatment. The correct number and classifications number were increased than before treatment. In EGb + Cit group, correct numbers and classifications were increased, and the number of persistent errors was decreased. After treatment, S100B level was decreased, and S100B levels change in EGb + Cit group was greater than in Cit group. Serum S100B level was positively correlated with HAMD and HAMA scores before treatment and positively correlated with persistent errors number in WCST. CONCLUSION: EGb, as an adjunctive treatment, can effectively improve depressive symptoms and reduce expression of serum S100B, which is a marker of brain injury, suggesting that EGb restores neurologic function during the treatment of depression in elderly patients and S100B participates in the therapeutic mechanism. EGb combined with depressive drugs plays synergistic role, and the time of onset of efficacy is faster than single antidepressants.


Assuntos
Quimioterapia Adjuvante/métodos , Depressão/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Extratos Vegetais/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Idoso , Citalopram/administração & dosagem , Citalopram/uso terapêutico , Cognição/efeitos dos fármacos , Depressão/epidemiologia , Depressão/psicologia , Transtorno Depressivo/epidemiologia , Transtorno Depressivo/psicologia , Feminino , Ginkgo biloba , Humanos , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/administração & dosagem , Extratos Vegetais/uso terapêutico , Subunidade beta da Proteína Ligante de Cálcio S100/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA