Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Microbiol ; 53(7): 454-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26115994

RESUMO

Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at the wheat maturation stage. Our results also demonstrated that NT resulted in the positive protection of the community structure of AM fungi and played an important role in maintaining their functionality especially for maize seedlings.


Assuntos
Fosfatase Alcalina/metabolismo , Produtos Agrícolas/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Triticum/microbiologia , Zea mays/microbiologia , Agricultura/métodos , Biodiversidade , China , Produtos Agrícolas/crescimento & desenvolvimento , Micorrizas/enzimologia , Micorrizas/crescimento & desenvolvimento , Fósforo/metabolismo , Solo/química , Esporos Fúngicos/isolamento & purificação , Fatores de Tempo , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
2.
Appl Microbiol Biotechnol ; 88(3): 781-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20683717

RESUMO

The P efficiency, crop yield, and response of wheat to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (19 years) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIR) of wheat plants at acquiring P were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Without AMF inoculation, higher crop yields but lower colonization rates were observed in the NPK and two OA-inputted treatments, and NPK had significantly (P < 0.05) lower impacts on organic C and available P in soils and thereby P acquisition of wheat plants compared with OA and 1/2 OM. G. caledonium inoculation significantly (P < 0.05) increased colonization rates with the NPK and two P-deficient treatments but significantly (P < 0.05) increased vegetative biomass, crop yield, and P acquisition of wheat as well as soil alkaline phosphatase (ALP) activity, only with the NPK treatment. This gave an MIR of ca. 45% on total P acquisition of wheat plants. There were no other remarkable MIRs. It suggested that the MIR is determined by soil available P status, and rational combination of AMF with chemical NPK fertilizer can compensate for organic amendments by improving P-acquisition efficiency in arable soils.


Assuntos
Micorrizas/fisiologia , Fósforo/metabolismo , Microbiologia do Solo , Solo/química , Triticum/microbiologia , Fosfatase Alcalina/metabolismo , Biomassa , Fertilizantes , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA