Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(32): e2300859, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066745

RESUMO

In view of the great challenges related to the complexity and heterogeneity of tumors, efficient combination therapy is an ideal strategy for eliminating primary tumors and inhibiting distant tumors. A novel aggregation-induced emission (AIE) phototherapeutic agent called T-TBBTD is developed, which features a donor-acceptor-donor (D-A-D) structure, enhanced twisted molecule conformation, and prolonged second near-infrared window (NIR-II) emission. The multimodal imaging function of the molecule has significance for its treatment time window and excellent photothermal/photodynamic performance for multimode therapy. The precise molecular structure and versatility provide prospects for molecular therapy for anti-tumor applications. Fluorescence imaging in the NIR-II window offers advantages with enhanced spatial resolution, temporal resolution, and penetration depth. The prepared AIE@R837 NPs also have controllable performance for antitumor photo-immunotherapy. Following local photo-irradiation, AIE@R837 NPs generate abundant heat, and 1 O2 directly kills tumor cells, induces immunogenic cell death (ICD) as a photo-therapeutic effect, and releases R837, which enhances the synergistic effect of antigen presentation and contributes to the long-lasting protective antitumor immunity. A bilateral 4T1 tumor model revealed that this photo-immunotherapy can eliminate primary tumors. More importantly, it has a significant inhibitory effect on distant tumor growth. Therefore, this method can provide a new strategy for tumor therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Imiquimode , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Neoplasias/patologia , Imagem Óptica/métodos , Imunoterapia/métodos , Imagem Multimodal , Nanopartículas/química , Linhagem Celular Tumoral , Fototerapia/métodos
2.
J Nanobiotechnology ; 20(1): 61, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109867

RESUMO

BACKGROUND: Photoimmunotherapy is one of the most promising strategies in tumor immunotherapies, but targeted delivery of photosensitizers and adjuvants to tumors remains a major challenge. Here, as a proof of concept, we describe bone marrow mesenchymal stem cell-derived nanovesicles (NVs) displaying anti-PD-L1 antibodies (aPD-L1) that were genetically engineered for targeted drug delivery. RESULTS: The high affinity and specificity between aPD-L1 and tumor cells allow aPD-L1 NVs to selectively deliver photosensitizers to cancer tissues and exert potent directed photothermal ablation. The tumor immune microenvironment was programmed via ablation, and the model antigen ovalbumin (OVA) was designed to fuse with aPD-L1. The corresponding membrane vesicles were then extracted as an antigen-antibody integrator (AAI). AAI can work as a nanovaccine with the immune adjuvant R837 encapsulated. This in turn can directly stimulate dendritic cells (DCs) to boast the body's immune response to residual lesions. CONCLUSIONS: aPD-L1 NV-based photoimmunotherapy significantly improves the efficacy of photothermal ablation and synergistically enhances subsequent immune activation. This study describes a promising strategy for developing ligand-targeted and personalized cancer photoimmunotherapy.


Assuntos
Imunoterapia , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/terapia , Fototerapia , Microambiente Tumoral
3.
Adv Sci (Weinh) ; 7(14): 2000346, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32714751

RESUMO

Corneal neovascularization (CNV) is one of the main factors that induce blindness worldwide. However, current medical treatments cannot achieve non-invasive and safe inhibition of CNV. A noninvasive photoacoustic imaging (PAI)-guided method is purposed for the regression of CNV. PAI can monitor the oxygen saturation of cornea blood vessels through the endogenous contrast of hemoglobin and trace administrated drugs by themselves as exogenous contrast agents. An indocyanine green (ICG)-based nanocomposite (R-s-ICG) is prepared for CNV treatment via eye drops and subconjunctival injections. It is demonstrated that R-s-ICG can enrich corneal tissues and pathological blood vessels rapidly with minor residua in normal eyeball tissues. Anti-CNV treatment-driven changes in the blood vessels are assessed by real-time multimodal PAI in vivo, and then a safe laser irradiation strategy through the canthus is developed for phototherapy and gene therapy synergistic treatment. The treatment leads to the efficient inhibition of CNV with faint damages to normal tissues.

4.
J Control Release ; 323: 635-643, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32302761

RESUMO

Accurate identification of surgical margins for malignancy remains a challenge in the surgical therapy of cancer, and this encountered interoperative difficulties which directly contribute to the prognosis of patients. In recent years, indocyanine green (ICG) has been approved and applied in clinical settings for lesions detection, especially for the precise surgical resection. However, rapid clearance and poor stability greatly limit its clinical practicality. Herein, a super-stable homogeneous iodinated formulation technology (SHIFT) is designed to realize sufficient dispersion of ICG into lipiodol (SHIFTs) for transcatheter embolization (TAE) synergistic fluorescence-guided resection. Particularly, SHIFTs is prepared in a green physical mixture via a carrier-free manner, which possesses controlled morphology, long-term stability, and improved optical characteristics of ICG (fluorescence/photoacoustic/photothermal activities). Furthermore, the viscosity of the synthetic solvent is comparable to lipiodol, and further assessment demonstrated the same efficacy in computed tomography. The performance of SHIFTs in the fluorescence navigation was further evaluated in vivo by TAE therapy to the rabbit VX2 tumor model for a two-week monitor. The integration of near-infrared fluorescence surgery navigation and TAE could effectively guarantee the precise resection for hepatocellular carcinoma. This SHIFT system provides good potentials for ameliorating the dilemma of precise fluorescent navigation for surgical resection after arterial embolization in clinical practice.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Corantes , Óleo Etiodado , Humanos , Verde de Indocianina , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Coelhos
5.
ACS Nano ; 14(3): 2880-2893, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32125820

RESUMO

Micro/nanorobots have been extensively explored as a tetherless small-scale robotic biodevice to perform minimally invasive interventions in hard-to-reach regions. Despite the emergence of versatile micro/nanorobots in recent years, matched in vivo development remains challenging, limited by unsatisfactory integration of core functions. Herein, we report a polydopamine (PDA)-coated magnetic microswimmer consisting of a magnetized Spirulina (MSP) matrix and PDA surface. Apart from the properties of the existing MSP (e.g., robust propulsion, natural fluorescence, tailored biodegradation, and selective cytotoxicity), the introduced PDA coating enhances the photoacoustic (PA) signal and photothermal effect of the MSP, thus making PA image tracking and photothermal therapy possible. Meanwhile, the PDA's innate fluorescence quenching and diverse surface reactivity allows an off-on fluorescence diagnosis with fluorescence probes (e.g., coumarin 7). As a proof of concept, real-time image tracking (by PA imaging) and desired theranostic capabilities of PDA-MSP microswimmer swarms are demonstrated for the treatment of pathogenic bacterial infection. Our study suggests a feasible antibacterial microrobot for in vivo development and a facile yet versatile functionalization strategy of micro/nanorobots.


Assuntos
Infecções Bacterianas/diagnóstico por imagem , Corantes Fluorescentes/química , Indóis/química , Técnicas Fotoacústicas , Fototerapia , Polímeros/química , Spirulina/química , Animais , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Claritromicina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Fenômenos Magnéticos , Camundongos , Testes de Sensibilidade Microbiana , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA