Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37760734

RESUMO

In recent years, with the increases in microorganisms that express a multitude of antimicrobial resistance (AMR) mechanisms, the threat of antimicrobial resistance in the global population has reached critical levels. The introduction of the COVID-19 pandemic has further contributed to the influx of infections caused by multidrug-resistant organisms (MDROs), which has placed significant pressure on healthcare systems. For over a century, the potential for light-based approaches targeted at combatting both cancer and infectious diseases has been proposed. They offer effective killing of microbial pathogens, regardless of AMR status, and have not typically been associated with high propensities of resistance development. To that end, the goal of this review is to describe the different mechanisms that drive AMR, including intrinsic, phenotypic, and acquired resistance mechanisms. Additionally, the different light-based approaches, including antimicrobial photodynamic therapy (aPDT), antimicrobial blue light (aBL), and ultraviolet (UV) light, will be discussed as potential alternatives or adjunct therapies with conventional antimicrobials. Lastly, we will evaluate the feasibility and requirements associated with integration of light-based approaches into the clinical pipeline.

3.
Adv Drug Deliv Rev ; 180: 114057, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800566

RESUMO

Over the past decade, antimicrobial blue light (aBL) at 400 - 470 nm wavelength has demonstrated immense promise as an alternative approach for the treatment of multidrug-resistant infections. Since our last review was published in 2017, there have been numerous studies that have investigated aBL in terms of its, efficacy, safety, mechanism, and propensity for resistance development. In addition, researchers have looked at combinatorial approaches that exploit aBL and other traditional and non-traditional therapeutics. To that end, this review aims to update the findings from numerous studies that capitalize on the antimicrobial effects of aBL, with a focus on: efficacy of aBL against different microbes, identifying endogenous chromophores and targets of aBL, Resistance development to aBL, Safety of aBL against host cells, and Synergism of aBL with other agents. We will also discuss our perspective on the future of aBL.


Assuntos
Infecções/terapia , Fototerapia/métodos , Animais , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos , Humanos , Infecções/microbiologia , Fototerapia/efeitos adversos , Fototerapia/tendências
4.
Photochem Photobiol ; 98(1): 202-210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382232

RESUMO

Increasing resistance to existing antibiotics by microbes is currently the biggest dilemma. Antimicrobial photodynamic therapy is a promising alternative for the treatment of multidrug-resistant infections. The aim of the current study was to fabricate graphene quantum dots loaded with curcumin as photosensitizer for improved antimicrobial photodynamic therapy. The study involved fabrication of blank and curcumin-loaded graphene quantum dots, their characterizations (TEM, UV-visible and fluorescence emission spectra), cytotoxicity assay, ROS assay and investigation of enhanced antimicrobial photodynamic effect against resistant microbes. The fabrication of blank and loaded graphene quantum dots was confirmed by the observation of peak shift and changes in peak intensity of blank graphene quantum dots, curcumin alone compared with curcumin-loaded graphene quantum dots in UV-visible and fluoresce emission spectra. Cytotoxicity assay showed that 100 µm concentration was not toxic to NIH/3t3 fibroblasts. In ROS assay, the curcumin-loaded formulation showed three-fold increase in ROS production. Blue-light (405 nm) irradiance of 30 J cm-2 and photosensitizer concentration of 100 µm showed ~3.5 log10 enhanced CUF reduction against Pseudomonas aeruginosa, MRSA, Escherichia coli and Candida albicans. In conclusion, curcumin-loaded graphene quantum dots shoed enhanced antimicrobial photodynamic effects and can be used as an alternative effective treatment for resistant infections.


Assuntos
Anti-Infecciosos , Curcumina , Grafite , Fotoquimioterapia , Pontos Quânticos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Curcumina/farmacologia , Escherichia coli , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio
5.
J Shoulder Elbow Surg ; 30(12): 2671-2681, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34478863

RESUMO

BACKGROUND: The purpose of this study was to compare the efficacy of blue light therapy (BLT) and 5% topical benzoyl peroxide (BPO) gel in combination with standard chlorhexidine (CHX) preparation in eradicating Cutibacterium acnes at the deltopectoral interval measured by positive, quantitative culture findings. METHODS: Adult male volunteers were randomized to 1 of 3 treatment groups: BPO, BLT, and BPO followed by BLT. Contralateral shoulders served as matched controls. Volunteers randomized to BPO applied the gel for a total of 5 treatments. In the BLT group, a single 23-minute treatment was administered at an estimated irradiance of 40 mW/cm2 (radiant exposure, 55.2 J/cm2). In the BPO-BLT group, volunteers received both treatments as described earlier. After treatment with either BPO, BLT, or both, a single swab culture was taken from the treatment shoulder. Next, control and treatment shoulders were prepared with CHX, and cultures were taken from each shoulder. Cultures were sent for anaerobic quantitative growth analysis with both polymerase chain reaction and Sanger sequencing confirmation of presumptive C acnes colonies. RESULTS: This study enrolled 60 male volunteers, 20 per group, with no loss to follow-up. After treatment but prior to CHX administration, all culture samples in the BPO group and BLT group grew C acnes. Prior to CHX, 16 samples (80%) in the BPO-BLT group grew C acnes. On quantitative analysis, the BPO group and BPO-BLT group had significantly less growth of C acnes compared with the BLT group after treatment but prior to CHX (P < .05 for each). Following CHX administration, the BPO and BPO-BLT groups had significantly fewer positive culture findings (odds ratios of 0.03 and 0.29, respectively) and less quantity of growth compared with their control arms (P < .05). This was not seen in the BLT group. For quantitative between-group analysis, no significant synergistic effects were seen with BPO-BLT compared with BPO alone (P = .688). There was no difference in side effects between groups. CONCLUSION: The combination of topical BPO and CHX was effective at eliminating C acnes in most cases. BLT alone did not demonstrate effective antimicrobial properties against C acnes at the radiant exposure administered in this study. Combining BPO and BLT did not lead to significant synergistic antimicrobial effects. Both BPO and BLT are safe with few, transient side effects reported. More work is needed to determine whether BLT at higher radiant exposures or serial treatment results in bactericidal effects against C acnes in vivo.


Assuntos
Fármacos Dermatológicos , Articulação do Ombro , Adulto , Peróxido de Benzoíla , Clorexidina , Humanos , Masculino , Propionibacterium acnes , Pele
6.
J Infect Dis ; 224(6): 1069-1076, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-33528496

RESUMO

BACKGROUND: Cutaneous mold infections commonly result from an array of traumatic injuries that involve direct inoculation of contaminated soil into wounds. Here, we explored the use of antimicrobial blue light (aBL; 405 nm wavelength) and the combination of aBL with quinine hydrochloride (aBL + Q-HCL) for the treatment of cutaneous mold infections. METHODS: Efficacy of aBL and aBL + Q-HCL in killing clinically important pathogenic molds (Aspergillus fumigatus, Aspergillus flavus, and Fusarium oxyprorum) was investigated. Ultraperformance liquid chromatography identified and quantified endogenous porphyrins in the mold conidia. Finally, a mouse model of dermabrasion wound infected with a bioluminescent variant of A. fumigatus was developed to investigate the efficacy of aBL in treating cutaneous mold infections. RESULTS: We demonstrated that mold conidia are tolerant to aBL, but Q-HCL enhances efficacy. Transmission electron microscopy revealed intracellular damage by aBL. aBL + Q-HCL resulted in intracellular and cell wall damage. Porphyrins were observed in all mold strains, with A. fumigatus having the highest concentration. aBL and aBL + Q-HCL effectively reduced the burden of A. fumigatus within an established dermabrasion infection and limited recurrence posttreatment. CONCLUSIONS: aBL and aBL + Q-HCL may offer a novel approach for the treatment of mold infections.


Assuntos
Antibacterianos/uso terapêutico , Aspergillus fumigatus/isolamento & purificação , Porfirinas , Quinina/uso terapêutico , Dermatopatias Infecciosas/tratamento farmacológico , Animais , Luz , Camundongos , Dermatopatias Infecciosas/diagnóstico , Esporos Fúngicos
7.
Adv Wound Care (New Rochelle) ; 10(9): 477-489, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33066719

RESUMO

Objective: The incidence of severe infectious complications after burn injury increases mortality by 40%. However, traditional approaches for managing burn infections are not always effective. High-voltage, pulsed electric field (PEF) treatment shortly after a burn injury has demonstrated an antimicrobial effect in vivo; however, the working parameters and long-term effects of PEF treatment have not yet been investigated. Approach: Nine sets of PEF parameters were investigated to optimize the applied voltage, pulse duration, and frequency or pulse repetition for disinfection of Pseudomonas aeruginosa infection in a stable mouse burn wound model. The bacterial load after PEF administration was monitored for 3 days through bioluminescence imaging. Histological assessments and inflammation response analyses were performed at 1 and 24 h after the therapy. Results: Among all tested PEF parameters, the best disinfection efficacy of P. aeruginosa infection was achieved with a combination of 500 V, 100 µs, and 200 pulses delivered at 3 Hz through two plate electrodes positioned 1 mm apart for up to 3 days after the injury. Histological examinations revealed fewer inflammatory signs in PEF-treated wounds compared with untreated infected burns. Moreover, the expression levels of multiple inflammatory-related cytokines (interleukin [IL]-1α/ß, IL-6, IL-10, leukemia inhibitory factor [LIF], and tumor necrosis factor-alpha [TNF-α]), chemokines (macrophage inflammatory protein [MIP]-1α/ß and monocyte chemoattractant protein-1 [MCP-1]), and inflammation-related factors (vascular endothelial growth factor [VEGF], macrophage colony-stimulating factor [M-CSF], and granulocyte-macrophage colony-stimulating factor [G-CSF]) were significantly decreased in the infected burn wound after PEF treatment. Innovation: We showed that PEF treatment on infected wounds reduces the P. aeruginosa load and modulates inflammatory responses. Conclusion: The data presented in this study suggest that PEF treatment is a potent candidate for antimicrobial therapy for P. aeruginosa burn infections.


Assuntos
Queimaduras/terapia , Desinfecção/métodos , Terapia por Estimulação Elétrica/métodos , Infecções por Pseudomonas/terapia , Infecção dos Ferimentos/terapia , Animais , Queimaduras/complicações , Queimaduras/microbiologia , Modelos Animais de Doenças , Eletroforese em Gel de Campo Pulsado , Inflamação , Pseudomonas aeruginosa , Sepse/etiologia , Sepse/imunologia , Taquicardia , Fator A de Crescimento do Endotélio Vascular , Infecção dos Ferimentos/microbiologia
8.
J Photochem Photobiol B ; 212: 111999, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32855026

RESUMO

The global dissemination of the novel coronavirus disease (COVID-19) has accelerated the need for the implementation of effective antimicrobial strategies to target the causative agent SARS-CoV-2. Light-based technologies have a demonstrable broad range of activity over standard chemotherapeutic antimicrobials and conventional disinfectants, negligible emergence of resistance, and the capability to modulate the host immune response. This perspective article identifies the benefits, challenges, and pitfalls of repurposing light-based strategies to combat the emergence of COVID-19 pandemic.


Assuntos
Infecções por Coronavirus/terapia , Luz , Pneumonia Viral/terapia , Betacoronavirus/isolamento & purificação , Betacoronavirus/efeitos da radiação , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Humanos , Raios Infravermelhos/uso terapêutico , Lasers de Estado Sólido/uso terapêutico , Terapia com Luz de Baixa Intensidade , Pandemias , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Pneumonia Viral/epidemiologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2 , Raios Ultravioleta
9.
JCI Insight ; 5(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32493838

RESUMO

With the effectiveness of antimicrobials declining as antimicrobial resistance continues to threaten public health, we must look to alternative strategies for the treatment of infections. In this study, we investigated an innovative, drug-free, dual-wavelength irradiation approach that combines 2 wavelengths of light, 460 nm and 405 nm, against methicillin-resistant Staphylococcus aureus (MRSA). MRSA was initially irradiated with 460-nm light (90-360 J/cm2) and subsequently irradiated with aliquots of 405-nm light (54-324 J/cm2). For in vivo studies, mouse skin was abraded and infected with approximately 107 CFUs of MRSA and incubated for 3 hours before irradiating with 460 nm (360 J/cm2) and 405 nm (342 J/cm2). Naive mouse skin was also irradiated to investigate apoptosis. We found that staphyloxanthin, the carotenoid pigment in MRSA cells, promoted resistance to the antimicrobial effects of 405-nm light. In addition, we found that the photolytic effect of 460-nm light on staphyloxanthin attenuated resistance of MRSA to 405-nm light killing. Irradiation of 460 nm alone did not elicit any antimicrobial effect on MRSA. In a proof-of-principle mouse skin abrasion infection model, we observed significant killing of MRSA using the dual-wavelength irradiation approach. However, when either wavelength of light was administered alone, no significant decrease in bacterial viability was observed. Moreover, exposure of the dual-wavelength irradiation to naive mouse skin did not result in any visible apoptosis. In conclusion, a dual-wavelength irradiation strategy may offer an innovative, effective, and safe approach for the treatment of skin infections caused by MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Fototerapia , Infecções Cutâneas Estafilocócicas , Animais , Modelos Animais de Doenças , Infecções Cutâneas Estafilocócicas/metabolismo , Infecções Cutâneas Estafilocócicas/patologia , Infecções Cutâneas Estafilocócicas/terapia
10.
Lasers Surg Med ; 52(5): 472-478, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31536154

RESUMO

BACKGROUND AND OBJECTIVES: Biofilms cause more than 80% of infections in humans, including more than 90% of all chronic wound infections and are extremely resistant to antimicrobials and the immune system. The situation is exacerbated by the fast spreading of antimicrobial resistance, which has become one of the biggest threats to current public health. There is consequently a critical need for the development of alternative therapeutics. Antimicrobial blue light (aBL) is a light-based approach that exhibits intrinsic antimicrobial effect without the involvement of exogenous photosensitizers. In this study, we investigated the antimicrobial effect of this non-antibiotic approach against biofilms formed by microbial isolates of multidrug-resistant bacteria. STUDY DESIGN/MATERIALS AND METHODS: Microbial isolates of Acinetobacter baumannii, Candida albicans, Escherichia coli, Enterococcus faecalis, MRSA, Neisseria gonorrhoeae, Pseudomonas aeruginosa, and Proteus mirabilis were studied. Biofilms were grown in microtiter plates for 24 or 48 hours or in the CDC biofilm reactor for 48 hours and exposed to aBL at 405 nm (60 mW/cm2 , 60 or 30 minutes). The anti-biofilm activity of aBL was measured by viable counts. RESULTS: The biofilms of A. baumannii, N. gonorrhoeae, and P. aeruginosa were the most susceptible to aBL with between 4 and 8 log10 inactivation after 108 J/cm2 (60 mW/cm2 , 30 minutes) or 216 J/cm2 (60 mW/cm2 , 60 minutes) aBL were delivered in the microplates. On the contrary, the biofilms of C. albicans, E. coli, E. faecalis, and P. mirabilis were the least susceptible to aBL inactivation (-0.30, -0.24, -0.84, and -0.68 log10 inactivation, respectively). The same aBL treatment in biofilms developed in the CDC biofilm reactor, caused -1.68 log10 inactivation in A. baumannii and -1.74 and -1.65 log10 inactivation in two different strains of P. aeruginosa. CONCLUSIONS: aBL exhibits potential against pathogenic microorganisms and could help with the significant need for new antimicrobials in clinical practice to manage multidrug-resistant infections. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Carga Bacteriana/efeitos da radiação , Biofilmes/efeitos da radiação , Fototerapia , Acinetobacter baumannii/efeitos da radiação , Candida albicans/efeitos da radiação , Enterococcus faecalis/efeitos da radiação , Escherichia coli/efeitos da radiação , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Neisseria gonorrhoeae/efeitos da radiação , Proteus mirabilis/efeitos da radiação , Pseudomonas aeruginosa/efeitos da radiação
11.
J Infect Dis ; 221(4): 618-626, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31565732

RESUMO

BACKGROUND: Antimicrobial resistance is a significant concern to public health, and there is a pressing need to develop novel antimicrobial therapeutic modalities. METHODS: In this study, we investigated the capacity for quinine hydrochloride (Q-HCL) to enhance the antimicrobial effects of antimicrobial blue light ([aBL] 405 nm wavelength) against multidrug-resistant (MDR) Gram-negative bacteria in vitro and in vivo. RESULTS: Our findings demonstrated the significant improvement in the inactivation of MDR Pseudomonas aeruginosa and Acinetobacter baumannii (planktonic cells and biofilms) when aBL was illuminated during Q-HCL exposure. Furthermore, the addition of Q-HCL significantly potentiated the antimicrobial effects of aBL in a mouse skin abrasion infection model. In addition, combined exposure of aBL and Q-HCL did not result in any significant apoptosis when exposed to uninfected mouse skin. CONCLUSIONS: In conclusion, aBL in combination with Q-HCL may offer a novel approach for the treatment of infections caused by MDR bacteria.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/efeitos da radiação , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos da radiação , Quinina/uso terapêutico , Terapia Ultravioleta/métodos , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/fisiologia , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos da radiação , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Plâncton/microbiologia , Pseudomonas aeruginosa/fisiologia , Quinina/farmacologia , Pele/lesões , Pele/microbiologia , Pele/patologia , Resultado do Tratamento , Ferimentos e Lesões/microbiologia
12.
Lasers Surg Med ; 52(6): 569-575, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31746024

RESUMO

BACKGROUND AND OBJECTIVE: Candida albicans is an opportunistic fungal pathogen of clinical importance and is the primary cause of fungal-associated wound infections, sepsis, or pneumonia in immunocompromised individuals. With the rise in antimicrobial resistance, it is becoming increasingly difficult to successfully treat fungal infections using traditional antifungals, signifying that alternative non-traditional approaches must be explored for their efficacy. STUDY DESIGN/MATERIALS AND METHODS: We investigated the combination of antimicrobial blue light (aBL) and quinine hydrochloride (Q-HCL) for improved inactivation of C. albicans, in vitro and in vivo, relative to either monotherapy. In addition, we evaluated the safety of this combination therapy in vivo using the TUNEL assay. RESULTS: The combination of aBL (108 J/cm2 ) with Q-HCL (1 mg/mL) resulted in a significant improvement in the inactivation of C. albicans planktonic cells in vitro, where a 7.04 log10 colony forming units (CFU) reduction was achieved, compared with aBL alone that only inactivated 3.06 log10 CFU (P < 0.001) or Q-HCL alone which did not result in a loss of viability. aBL + Q-HCL was also effective at inactivating 48-hour biofilms, with an inactivation 1.73 log10 CFU at the dose of 108 J/cm2 aBL and 1 mg/mL Q-HCL, compared with only a 0.73 or 0.66 log10 CFU by aBL and Q-HCL alone, respectively (P < 0.001). Transmission electron microscopy revealed that aBL + Q-HCL induced morphological and ultrastructural changes consistent with cell wall and cytoplasmic damage. In addition, aBL + Q-HCL was effective at eliminating C. albicans within mouse abrasion wounds, with a 2.47 log10 relative luminescence unit (RLU) reduction at the dose of 324 J/cm2 aBL and 0.4 mg/cm2 Q-HCL, compared with a 1.44 log10 RLU reduction by aBL alone. Q-HCL or nystatin alone did not significantly reduce the RLU. The TUNEL assay revealed some apoptotic cells before and 24 hours following treatment with aBL + Q-HCL. CONCLUSION: The combination of aBL + Q-HCL was effective at eliminating C. albicans both in vitro and in vivo. A comprehensive assessment of toxicity (cytotoxicity and genotoxicity) is required to fully determine the safety of aBL + Q-HCL therapy at different doses. In conclusion, the combination of aBL and Q-HCL may be a viable option for the treatment of cutaneous candidiasis. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Antimaláricos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candidíase/terapia , Fototerapia , Quinina/uso terapêutico , Infecção dos Ferimentos/terapia , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Candida albicans/efeitos da radiação , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Infecção dos Ferimentos/etiologia
13.
Adv Sci (Weinh) ; 6(11): 1900030, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31179216

RESUMO

Confronted with the severe situation that the pace of resistance acquisition is faster than the clinical introduction of new antibiotics, health organizations are calling for effective approaches to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, an approach to treat MRSA through photolysis of staphyloxanthin, an antioxidant residing in the microdomain of S. aureus membrane, is reported. This photochemistry process is uncovered through transient absorption imaging and quantitated by absorption spectroscopy, Raman spectroscopy, and mass spectrometry. Photolysis of staphyloxanthin transiently elevates the membrane permeability and renders MRSA highly susceptible to hydrogen peroxide attack. Consequently, staphyloxanthin photolysis by low-level 460 nm light eradicates MRSA synergistically with hydrogen peroxide and other reactive oxygen species. The effectiveness of this synergistic therapy is well validated in MRSA planktonic culture, MRSA-infected macrophage cells, stationary-phase MRSA, persisters, S. aureus biofilms, and two mice wound infection models. Collectively, the work demonstrates that staphyloxanthin photolysis is a new therapeutic platform to treat MRSA infections.

14.
Artigo em Inglês | MEDLINE | ID: mdl-29119936

RESUMO

BACKGROUND: Antibiotic resistance is one of the most serious health threats to modern medicine. The lack of potent antibiotics puts us at a disadvantage in the fight against infectious diseases, especially those caused by antibiotic-resistant microbial strains. To this end, an urgent need to search for alternative antimicrobial approaches has arisen. In the last decade, light-based anti-infective therapy has made significant strides in this fight to combat antibiotic resistance among various microbial strains. This method includes utilizing antimicrobial blue light, antimicrobial photodynamic therapy, and germicidal ultraviolet irradiation, among others. Light-based therapy is advantageous over traditional antibiotics in that it eradicates microbial cells rapidly and the likelihood of light-resistance development by microbes is low. METHODS: This review highlights the patents on light-based therapy that were filed approximately within the last decade and are dedicated to eradicating pathogenic microorganisms. The primary database that was used for the search was Google Patents. The searches were performed using the keywords including blue light, antimicrobial photodynamic therapy, ultraviolet irradiation, antibiotic resistance, disinfection, bacterium, fungus, and virus. RESULTS: Forty-five patents were obtained in our search: 9 patents for the antimicrobial blue light approach, 21 for antimicrobial photodynamic therapy, 11 for UV irradiation, and lastly 4 for other light-based anti-infective approaches. The treatments and devices discussed in this review are interestingly enough able to be used in various different functions and settings, such as dental applications, certain eye diseases, skin and hard surface cleansing, decontamination of internal organs (e.g., the stomach), decontamination of apparel and equipment, eradication of pathogenic microorganisms from buildings and rooms, etc. Most of the devices and inventions introduce methods of destroying pathogenic bacteria and fungi without harming human cells and tissues. CONCLUSIONS: Light-based antimicrobial approaches hold great promise for the future in regards to treating antibiotic-resistant infections and related diseases.


Assuntos
Anti-Infecciosos/uso terapêutico , Patentes como Assunto , Fotoquimioterapia/instrumentação , Fotoquimioterapia/métodos , Fototerapia/instrumentação , Fototerapia/métodos , Terapia Ultravioleta/instrumentação , Terapia Ultravioleta/métodos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Humanos
15.
Drug Resist Updat ; 33-35: 1-22, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29145971

RESUMO

As an innovative non-antibiotic approach, antimicrobial blue light in the spectrum of 400-470nm has demonstrated its intrinsic antimicrobial properties resulting from the presence of endogenous photosensitizing chromophores in pathogenic microbes and, subsequently, its promise as a counteracter of antibiotic resistance. Since we published our last review of antimicrobial blue light in 2012, there have been a substantial number of new studies reported in this area. Here we provide an updated overview of the findings from the new studies over the past 5 years, including the efficacy of antimicrobial blue light inactivation of different microbes, its mechanism of action, synergism of antimicrobial blue light with other angents, its effect on host cells and tissues, the potential development of resistance to antimicrobial blue light by microbes, and a novel interstitial delivery approach of antimicrobial blue light. The potential new applications of antimicrobial blue light are also discussed.


Assuntos
Bactérias/efeitos da radiação , Infecções Bacterianas/terapia , Fungos/efeitos da radiação , Micoses/terapia , Fototerapia/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana , Fungos/efeitos dos fármacos , Fungos/patogenicidade , Humanos , Luz , Testes de Sensibilidade Microbiana , Micoses/microbiologia , Resultado do Tratamento
17.
J Vis Exp ; (122)2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28518072

RESUMO

Burn infections continue to be an important cause of morbidity and mortality. The increasing emergence of multidrug-resistant (MDR) bacteria has led to the frequent failure of traditional antibiotic treatments. Alternative therapeutics are urgently needed to tackle MDR bacteria. An innovative non-antibiotic approach, antimicrobial blue light (aBL), has shown promising effectiveness against MDR infections. The mechanism of action of aBL is not yet well understood. It is commonly hypothesized that naturally occurring endogenous photosensitizing chromophores in bacteria (e.g., iron-free porphyrins, flavins, etc.) are excited by aBL, which in turn produces cytotoxic reactive oxygen species (ROS) through a photochemical process. Unlike another light-based antimicrobial approach, antimicrobial photodynamic therapy (aPDT), aBL therapy does not require the involvement of an exogenous photosensitizer. All it needs to take effect is the irradiation of blue light; therefore, it is simple and inexpensive. The aBL receptors are the endogenous cellular photosensitizers in bacteria, rather than the DNA. Thus, aBL is believed to be much less genotoxic to host cells than ultraviolet-C (UVC) irradiation, which directly causes DNA damage in host cells. In this paper, we present a protocol to assess the effectiveness of aBL therapy for MDR Acinetobacter baumannii infections in a mouse model of burn injury. By using an engineered bioluminescent strain, we were able to noninvasively monitor the extent of infection in real time in living animals. This technique is also an effective tool for monitoring the spatial distribution of infections in animals.


Assuntos
Infecções por Acinetobacter/terapia , Acinetobacter baumannii , Queimaduras/complicações , Fototerapia , Infecções por Acinetobacter/etiologia , Animais , Farmacorresistência Bacteriana Múltipla , Feminino , Camundongos Endogâmicos BALB C
18.
Invest Ophthalmol Vis Sci ; 58(1): 586-593, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28129422

RESUMO

Purpose: To investigate the effectiveness of antimicrobial blue light (aBL) as an alternative or adjunctive therapeutic for infectious keratitis. Methods: We developed an ex vivo rabbit model and an in vivo mouse model of infectious keratitis. A bioluminescent strain of Pseudomonas aeruginosa was used as the causative pathogen, allowing noninvasive monitoring of the extent of infection in real time via bioluminescence imaging. Quantitation of bacterial luminescence was correlated to colony-forming units (CFU). Using the ex vivo and in vivo models, the effectiveness of aBL (415 nm) for the treatment of keratitis was evaluated as a function of radiant exposure when aBL was delivered at 6 or 24 hours after bacterial inoculation. The aBL exposures calculated to reach the retina were compared to the American National Standards Institute standards to estimate aBL retinal safety. Results: Pseudomonas aeruginosa keratitis fully developed in both the ex vivo and in vivo models at 24 hours post inoculation. Bacterial luminescence in the infected corneas correlated linearly to CFU (R2 = 0.921). Bacterial burden in the infected corneas was rapidly and significantly reduced (>2-log10) both ex vivo and in vivo after a single exposure of aBL. Recurrence of infection was observed in the aBL-treated mice at 24 hours after aBL exposure. The aBL toxicity to the retina is largely dependent on the aBL transmission of the cornea. Conclusions: Antimicrobial blue light is a potential alternative or adjunctive therapeutic for infectious keratitis. Further studies of corneal and retinal safety using large animal models, in which the ocular anatomies are similar to that of humans, are warranted.


Assuntos
Córnea/microbiologia , Infecções Oculares Bacterianas/terapia , Ceratite/terapia , Fototerapia/métodos , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa/isolamento & purificação , Animais , Contagem de Colônia Microbiana , Córnea/patologia , Modelos Animais de Doenças , Infecções Oculares Bacterianas/diagnóstico , Infecções Oculares Bacterianas/microbiologia , Feminino , Seguimentos , Ceratite/diagnóstico , Ceratite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/microbiologia , Coelhos
19.
Biomed Opt Express ; 7(10): 4220-4227, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867727

RESUMO

The limited penetration depth of light in skin tissues is a practical bottleneck in dermatologic applications of light-induced therapies, including anti-microbial blue light therapy and photodynamic skin cancer therapy. Here, we demonstrate a novel device, termed optical microneedle array (OMNA), for percutaneous light delivery. A prototype device with a 11 by 11 array of needles at a spacing of 1 mm and a length of 1.6 mm was fabricated by press-molding poly-(lactic acid) (PLA) polymers. The device also incorporates a matched microlens array that focuses the light through the needle tips at specific points to achieve an optimal intensity profile in the tissue. In experiments done with bovine tissues, the OMNA enabled us to deliver a total of 7.5% of the input photons at a wavelength of 491 nm, compared to only 0.85% without the device. This 9-fold enhancement of light delivery was close to the prediction of 10.8 dB by ray-tracing simulation and is expected to increase the effective treatment depth of anti-microbial blue light therapy significantly from 1.3 to 2.5 mm in human skin.

20.
Lasers Surg Med ; 48(5): 562-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26891084

RESUMO

Pseudomonas aeruginosa is among the most common pathogens that cause nosocomial infections and is responsible for about 10% of all hospital-acquired infections. In the present study, we investigated the potential development of tolerance of P. aeruginosa to antimicrobial blue light by carrying 10 successive cycles of sublethal blue light inactivation. The high-performance liquid chromatographic (HPLC) analysis was performed to identify endogenous porphyrins in P. aeruginosa cells. In addition, we tested the effectiveness of antimicrobial blue light in a mouse model of nonlethal skin abrasion infection by using a bioluminescent strain of P. aeruginosa. The results demonstrated that no tolerance was developed to antimicrobial blue light in P. aeruginosa after 10 cycles of sub-lethal inactivation. HPLC analysis showed that P. aeruginosa is capable of producing endogenous porphyrins in particularly, coproporphyrin III, which are assumed to be responsible for the photodynamic effects of blue light alone. P. aeruginosa infection was eradicated by antimicrobial blue light alone (48 J/cm(2) ) without any added photosensitizer molecules in the mouse model. In conclusion, endogenous photosensitization using blue light should gain considerable attention as an effective and safe alternative antimicrobial therapy for skin infections. Lasers Surg. Med. 48:562-568, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Desinfecção/métodos , Luz , Fototerapia/métodos , Porfirinas/metabolismo , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa/efeitos da radiação , Dermatopatias Bacterianas/terapia , Animais , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA