Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 120: 155031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666060

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common type of cancer that shows great morbidity and mortality rates. However, there are limited available drugs to treat HCC. AIM: The present work focused on discovering the potential anti-HCC compounds from traditional Chinese medicine (TCM) by employing high-throughput sequencing-based high-throughput screening (HTS2) together with the liver cancer pathway-associated gene signature. METHODS: HTS2 assay was adopted for identifying herbs. Protein-protein interaction (PPI) network analysis and computer-aided drug design (CADD) were used to identify key targets and screen the candidate natural products of herbs. Molecular docking, network pharmacology analysis, western blotting, immunofluorescent staining, subcellular fractionation experiment, dual-luciferase reporter gene assay, surface plasmon resonance (SPR) as well as nuclear magnetic resonance (NMR) were performed to validate the ability of compound binding with key target and inhibiting its function. Moreover, cell viability, colony-forming, cell cycle assay and animal experiments were performed to examine the inhibitory effect of compound on HCC. RESULTS: We examined the perturbation of 578 herb extracts on the expression of 84 genes from the liver cancer pathway, and identified the top 20 herbs significantly reverting the gene expression of this pathway. Signal transducer and activator of transcription 3  (STAT3)  was identified as one of the key targets of the liver cancer pathway by PPI network analysis. Then, by analyzing compounds from top 20 herbs utilizing CADD, we found ginsenoside F2 (GF2) binds to STAT3 with high affinity, which was further validated by the results from molecular docking, SPR and NMR. Additionally, our results showed that GF2 suppresses the phosphorylation of Y705 of STAT3, inhibits its nuclear translocation, decreases its transcriptional activity and inhibits the growth of HCC in vitro and in vivo. CONCLUSION: Based on this large-scale transcriptional study, a number of anti-HCC herbs were identified. GF2, a compound derived from TCM, was found to be a chemical basis of these herbs in treating HCC. The present work also discovered that GF2 is a new STAT3 inhibitor, which is able to suppress HCC. As such, GF2 represents a new potential anti-HCC therapeutic strategy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Fator de Transcrição STAT3 , Simulação de Acoplamento Molecular
2.
J Ethnopharmacol ; 306: 116134, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36627003

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yupingfeng San (YPFS) is a classic rousing prescription in Chinese medicine, with widly clinical application and remarkably curative effect. It consists of three herbs named Astragalus mongholicus Bunge (Huangqi), Atractylodes rubra Dekker (Baizhu) and Saposhnikovia divaricata (Turcz.) Schischk. (Fangfeng), and has a variety of pharmacological activities including immune regulation, antioxidant, anti-tumor, regulation of cytokines, etc. AIM OF THE STUDY: It has been proved that YPFS exerts its anti-tumor effect through enhancing the systemic and local immune responses in tumor patients, moreover, it has the direct tumor-suppressing effect and can reduce the adverse reactions caused by radiotherapy and chemotherapy drugs. Therefore, in this study, we explored the potential anti-HCC mechanism of YPFS based on HTS2 technology and systems pharmacology, aiming to provide a scientific basis for the clinical application of YPFS and a new strategy for Chinese medicine research. MATERIALS AND METHODS: In this study, systems pharmacology plus high throughput sequencing-based high throughput screening (HTS2) technology, and experimental validation were used to investigate the therapeutic mechanisms and the chemical basis of YPFS in HCC treatment. Firstly, the potential therapeutic targets and signaling pathways of YPFS in the treatment of HCC were obtained through systems pharmacology. Subsequently, HTS2 technology combined with PPI network analysis were used to reveal potential therapeutic targets. Finally, the anti-HCC effects and underlying mechanisms of YPFS were further verified in vitro in human hepatocellular carcinoma cell lines. Moreover, the possible chemical basis was explored by drug target verification and molecular docking technology. RESULTS: In total, 183 active ingredients were predicted by YPFS screening and 49 anti-HCC targets were further identified. Most of these targets were enriched into the "MAPK pathway", and the expression of 37 genes was significantly changed after herb treatment. Among them, 5 key targets, including VEGFA, GRB2, JUN, PDGFRB and CDC42, were predicted by protein-protein interaction (PPI) network analysis. According to our results, YPFS inhibited the proliferation, induced the apoptosis and caused cell cycle arrest of HCC cells. In addition, YPFS significantly reduced P38 gene expression. Fangfeng, one of the three herbs in YPFS, significantly down-regulated the expression of more target genes than that of the other two herbs. Lastly, as revealed by molecular docking analysis, 4'-O-glucosyl-5-O-methylvisamminol, an active ingredient identified in Fangfeng, showed a high affinity for P38. CONCLUSION: Taken together, this study shows that YPFS possesses the activities of anti-proliferation and pro-apoptosis in treating HCC, which are achieved by inhibiting the MAPK signaling pathway. P38 is one of the critical targets of YPFS in treating HCC, which may be directly bound and inhibited by 4'-O-glucosyl-5-O-methylvisamminol, a compound derived from YPFS.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Linhagem Celular
3.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 23-33, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36017888

RESUMO

Neuroinflammation mediated by microglia is an important pathophysiological mechanism in neurodegenerative diseases. However, there is a lack of effective drugs to treat neuroinflammation. N-acetyldopamine dimer (NADD) is a natural compound from the traditional Chinese medicine Isaria cicada. In our previous study, we found that NADD can attenuate DSS-induced ulcerative colitis by suppressing the NF-κB and MAPK pathways. Does NADD inhibit neuroinflammation, and what is the target of NADD? To answer this question, lipopolysaccharide (LPS)-stimulated BV-2 microglia was used as a cell model to investigate the effect of NADD on neuroinflammation. Nitric oxide (NO) detection, reactive oxygen species (ROS) detection and enzyme-linked immunosorbent assay (ELISA) results show that NADD attenuates inflammatory signals and proinflammatory cytokines in LPS-stimulated BV-2 microglia, including NO, ROS, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and interleukin-6 (IL-6). Western blot analysis show that NADD inhibits the protein levels of Toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), ASC and cysteinyl aspartate specific proteinase (Caspase)-1, indicating that NADD may inhibit neuroinflammation through the TLR4/NF-κB and NLRP3/Caspase-1 signaling pathways. In addition, surface plasmon resonance assays and molecular docking demonstrate that NADD binds with TLR4 directly. Our study reveals a new role of NADD in inhibiting the TLR4/NF-κB and NLRP3/Caspase-1 pathways, and shows that TLR4-MD2 is the direct target of NADD, which may provide a potential therapeutic candidate for the treatment of neuroinflammation.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Humanos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Aspártico/metabolismo , Doenças Neuroinflamatórias , Peptídeo Hidrolases/metabolismo , Lipopolissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Caspases/metabolismo , Microglia/metabolismo
4.
Front Pharmacol ; 13: 842730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462925

RESUMO

Ulcerative Colitis (UC) is a major form of chronic inflammatory bowel disease of the colonic mucosa and exhibits progressive morbidity. There is still a substantial need of small molecules with greater efficacy and safety for UC treatment. Here, we report a N-acetyldopamine dimer (NADD) elucidated (2R,3S)-2-(3',4'-dihydroxyphenyl)-3-acetylamino-7-(N-acetyl-2″-aminoethyl)-1,4-benzodioxane, which is derived from traditional Chinese medicine Isaria cicadae, exhibits significant therapeutic efficacy against dextran sulfate sodium (DSS)-induced UC. Functionally, NADD treatment effectively relieves UC symptoms, including weight loss, colon length shortening, colonic tissue damage and expression of pro-inflammatory factors in pre-clinical models. Mechanistically, NADD treatment significantly inhibits the expression of genes in inflammation related NF-κB and MAPK signaling pathways by transcriptome analysis and western blot, which indicates that NADD inhibits the inflammation in UC might through these two pathways. Overall, this study identifies an effective small molecule for UC therapy.

5.
J Ethnopharmacol ; 274: 114042, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33775806

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bitter-cold herbs have been used to clearing heat and expelling damp in clinical practice in China for thousands of years. AIM OF THE STUDY: This study aimed to investigate the common molecular mechanism of bitter-cold herbs through network pharmacology analysis, molecular docking and experimental validation in vivo. MATERIALS AND METHODS: Network pharmacological analysis integrated with molecular docking was employed to identify the active compounds and core action targets of the bitter-cold herbs. Then, the yeast-induced pathological model was established, and the antipyretic effect of the herbs was evaluated by checking rectal temperatures of the mice hourly. Lastly, the protein expression of core targets was examined to reveal the antipyretic mechanism. RESULTS: A total of 52 lead compounds from the four bitter-cold herbs, Phellodendri Chinensis Cortex (PCC), Sophorae Flavescentis Radix (SFR), Gentianae Radix Et Rhozima (GRER) and Coptidis Rhizoma (CR), and 248 compounds-related targets were screened out with PTGS2 ranking the first. The results from molecular docking showed that 22 compounds adopted the same orientation as aspirin and had an excellent stability in the active site pocket of PTGS2. Furthermore, these herbs exerted potential therapeutic effects through 38 related pathways. On the other hand, the outcome of animal experiments showed that they could significantly attenuate the yeast-induced mice fever with dose-dependent relationship. Further experimental results demonstrated that administration of yeast suspension raised protein expression of PTGS2 significantly, which was evidently inhibited in the high or low-dose groups of GRER as well as in the low-dose group of SFR (P < 0.01) though a higher expression of PTGS2 was shown in the low-dose group of CR compared with FM group (P < 0.01). CONCLUSIONS: The bitter-cold herbs can alleviate fever response and their antipyretic effect may mainly be attributed to regulating the expression of PTGS2 after the formation of ligand-receptor/PTGS2 complexes, and their active compounds might be nominated as antipyretic lead-ligand candidates.


Assuntos
Antipiréticos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Febre/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Animais , Antipiréticos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Masculino , Medicina Tradicional Chinesa , Camundongos , Simulação de Acoplamento Molecular , Farmacologia/métodos , Compostos Fitoquímicos/farmacologia
6.
Sci Bull (Beijing) ; 66(9): 884-888, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33457042

RESUMO

Coronavirus disease-2019 (COVID-19) has become a major global epidemic. Facilitated by HTS2 technology, we evaluated the effects of 578 herbs and all 338 reported anti-COVID-19 TCM formulae on cytokine storm-related signaling pathways, and identified the key targets of the relevant pathways and potential active ingredients in these herbs. This large-scale transcriptional study innovatively combines HTS2 technology with bioinformatics methods and computer-aided drug design. For the first time, it systematically explores the molecular mechanism of TCM in regulating the COVID-19-related cytokine storm, providing an important scientific basis for elucidating the mechanism of action of TCM in treating COVID-19.

7.
Comput Struct Biotechnol J ; 18: 1121-1136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489526

RESUMO

As one of the classical traditional Chinese medicine (TCM) prescriptions in treating gynecological tumors, Guizhi Fuling Decoction (GFD) has been used to treat breast cancer (BRCA). Nonetheless, the potential molecular mechanism remains unclear so far. Therefore, systems pharmacology was used in combination with high throughput sequencing-based high throughput screening (HTS2) assay and bioinformatic technologies in this study to investigate the molecular mechanisms of GFD in treating BRCA. By computationally analyzing 76 active ingredients in GFD, 38 potential therapeutic targets were predicted and significantly enriched in the "pathways in cancer". Meanwhile, experimental analysis was carried out to examine changes in the expression levels of 308 genes involved in the "pathways in cancer" in BRCA cells treated by five herbs of GFD utilizing HTS2 platform, and 5 key therapeutic targets, including HRAS, EGFR, PTK2, SOS1, and ITGB1, were identified. The binding mode of active compounds to these five targets was analyzed by molecular docking and molecular dynamics simulation. It was found after integrating the computational and experimental data that, GFD possessed the anti-proliferation, pro-apoptosis, and anti-angiogenesis activities mainly through regulating the PI3K and the MAPK signaling pathways to inhibit BRCA. Besides, consistent with the TCM theory about the synergy of Cinnamomi Ramulus (Guizhi) by Cortex Moutan (Mudanpi) in GFD, both of these two herbs acted on the same targets and pathways. Taken together, the combined application of computational systems pharmacology techniques and experimental HTS2 platform provides a practical research strategy to investigate the functional and biological mechanisms of the complicated TCM prescriptions.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30108661

RESUMO

Currently, cancer has become one of the major refractory diseases threatening human health. Complementary and alternative medicine (CAM) has gradually become an alternative choice for patients, which can be attributed to the high cost of leading cancer treatments (including surgery, radiotherapy, and chemotherapy) and the severe related adverse effects. As a critical component of CAM, traditional Chinese medicine (TCM) has increasing application in preventing and treating cancer over the past few decades. Huanglian Jiedu Decoction (HJD), a classical Chinese compound formula, has been recognized to exert a beneficial effect on cancer treatment, with few adverse effects reported. Nevertheless, the precise molecular mechanism remains unclear yet. In this study, we had integrated systems pharmacology and bioinformatics to explore the major active ingredients against cancer, targets for cancer treatment, and the related mechanisms of action. These targets were scrutinized using web-based Gene SeT Analysis Toolkit (WebGestalt), and 10 KEGG pathways were identified by enrichment analysis. Refined analysis of the KEGG pathways indicated that the anticancer effect of HJD showed a functional correlation with the p53 signaling pathway; moreover, HJD had potential therapeutic effect on prostate cancer (PCa) and small cell lung cancer (SCLC). Afterwards, genetic alterations and survival analysis of key targets for cancer treatment were examined in both PCa and SCLC. Our results suggested that such integrated research strategy might serve as a new paradigm to guide future research on Chinese compound formula. Importantly, such strategy contributes to studying the anticancer effect and the mechanisms of action of Chinese compound formula, which has also laid down the foundation for clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA