Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Food Sci ; 87(2): 780-794, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35040140

RESUMO

This work chemically modified short linear glucan (SLG) by introducing a surface carboxymethyl group to obtain carboxymethylated SLG (CMSLG), then prepared CMSLG-based ternary nanocomplex particles based on electrostatic interactions with sodium-caseinate (NaCas) and pectin. These nanocomplex particles are homogeneous, generally exhibiting sizes of <200 nm with spherical shape and negative surface charge. In addition, the results showed the increase in both the mass ratio of CMSLG and NaCas and the synthesis temperature can improve the colloidal stability of nanocomplex particles when they are exposed to simulated gastrointestinal fluids containing digestive enzymes. Moreover, nanocomplex particles have an exceptional capability to encapsulate curcumin, and this encapsulation efficiency increased as the mass ratios of CMSLG and NaCas were increased. The study also investigated the antioxidant activity and in vitro release properties of curcumin encapsulated by nanocomplex particles and found that CMSLG/NaCas/pectin had improved higher ABTS radical scavenging capacity and allowed for the controlled, sustained release of curcumin in simulated gastrointestinal fluid within 6 hours. Thus, this study provides new insights into the design of a CMSLG-based ternary nanocomplex and its use as a potential oral delivery system for lipophilic bioactive compounds. PRACTICAL APPLICATION: Curcumin, as a sort of natural polyphenolic compound, has many physiologic functions such as anti-oxidation, anticancer, and prevention of Alzheimer's disease. However, the application of the curcumin has been limited by its poor water solubility and unstable physicochemical property. To solve this problem, the nanotechnology has been used to prepare the nano-delivery carriers for curcumin. This work prepared a ternary nanoparticle based on the carboxymethyl short linear glucan, sodium-caseinate, and pectin. The ternary nanoparticle can achieve a higher encapsulation efficiency for curcumin. In addition, the ternary nanoparticle can enhance the ABTS radical scavenging capacity and provided control and sustained release of curcumin in the simulated gastrointestinal fluid.


Assuntos
Curcumina , Nanopartículas , Caseínas , Portadores de Fármacos , Glucanos , Tamanho da Partícula , Pectinas , Sódio , Eletricidade Estática
2.
Molecules ; 26(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801201

RESUMO

Interest in finding plant-based herbicides to supplement synthesized herbicides is increasing. Although the extract of Sapindus mukorossi Gaertn has been reported to have herbicidal activity, little is known about phytotoxic substances and their efficacy of weed control in the field. To identify phytotoxic substances, the bioassay-guided fractionation by column chromatography and high-speed counter-current chromatography (HSCCC) was carried out. The phytotoxic activity assay, performed by the agar medium method, showed that the 70% ethanol fraction exhibited strong root growth inhibition against Trifolium pratense with an 50% inhibitory concentration (IC50) value of 35.13 mg/L. An active compound was isolated from the 70% ethanol fraction and identified as hederagenin 3-o-ß-D-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside (Compound A). Compound A had an IC50 value of 16.64 mg/L. Finally, a new formulation was prepared based on the 70% ethanol fraction, which exhibited good efficacy against broadleaf weeds in a carrot field. The fresh weight control efficacy was 78.7% by 45 days after treatment at the dose of 1500 g a. i./ha. Hence, the extract of S. mukorossi pulp could be a promising supplement to the synthesized herbicides. Furthermore, compound A from S. mukorossi may be responsible for its phytotoxic activity.


Assuntos
Alcaloides/farmacologia , Extratos Vegetais/farmacologia , Sapindus/química , Saponinas/farmacologia , Toxinas Biológicas/farmacologia , Trifolium/crescimento & desenvolvimento , Controle de Plantas Daninhas , Trifolium/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA