Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1364(2): 245-57, 1998 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-9593917

RESUMO

A model for energy conversion in Complex I is proposed that is a conservative expansion of Mitchell's Q-cycle using a simple mechanistic variation of that already established experimentally for Complex III. The model accommodates the following proposals. (1) The large number of flavin and iron-sulfur redox cofactors integral to Complex I form a simple but long electron transfer chain guiding submillisecond electron transfer from substrate NADH in the matrix to the [4Fe-4S] cluster N2 close to the matrix-membrane interface. (2) The reduced N2 cluster injects a single electron into a ubiquinone (Q) drawn from the membrane pool into a nearby Qnz site, generating an unstable transition state semiquinone (SQ). The generation of a SQ species is the primary step in the energy conversion process in Complex I, as in Complex III. In Complex III, the SQ at the Qo site near the cytosolic side acts as a strong reductant to drive electronic charge across the membrane profile via two hemes B to a Qi site near the matrix side. We propose that in Complex I, the SQ at the Qnz site near the matrix side acts as a strong oxidant to pull electronic charge across the membrane profile via a quinone (Qny site) from a Qnx site near the cytosolic side. The opposing locations of matrix side Qnz and cytosolic side Qo, together with the opposite action of Qnz as an oxidant rather than a reductant, renders the Complex I and III processes vectorially and energetically complementary. The redox properties of the Qnz and Qo site occupants can be identical. (3) The intervening Qny site of Complex I acts as a proton pumping element (akin to the proton pump of Complex IV), rather than the simple electron guiding hemes B of Complex III. Thus the transmembrane action of Complex I doubles to four (or more) the number of protons and charges translocated per NADH oxidized and Q reduced. The Qny site does not exchange with the pool and may even be covalently bound. (4) The Qnx site on the cytosol side of Complex I is complementary to the Qi site on the matrix side of Complex III and can have the same redox properties. The Qnx site draws QH2 from the membrane pool to be oxidized in two single electron steps. Besides explaining earlier observations and making testable predictions, this Complex I model re-establishes a uniformity in the mechanisms of respiratory energy conversion by using engineering principles common to Complexes III and IV: (1) all the primary energy coupling reactions in the different complexes use oxygen chemistry in the guise of dioxygen or ubiquinone, (2) these reactions are highly localized structurally, utilizing closely placed catalytic redox cofactors, (3) these reactions are also highly localized energetically, since virtually all the free energy defined by substrates is conserved in the form of transition state that initiates the transmembrane action and (4) all complexes possess apparently supernumerary oxidation-reduction cofactors which form classical electron transfer chains that operate with high directional specificity to guide electron at near zero free energies to and from the sites of localized coupling.


Assuntos
Modelos Químicos , NAD(P)H Desidrogenase (Quinona)/química , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/química , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredução , Prótons , Ubiquinona/química
2.
Biochemistry ; 33(3): 723-33, 1994 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-8292600

RESUMO

Folding models suggest that the highly conserved histidine 217 of the cytochrome b subunit from the cytochrome bc1 complex is close to the quinone reductase (Qi) site. This histidine (bH217) in the cytochrome b polypeptide of the photosynthetic bacterium Rhodobacter capsulatus has been replaced with three other residues, aspartate (D), arginine (R), and leucine (L). bH217D and bH217R are able to grow photoheterotrophically and contain active cytochrome bc1 complexes (60% of wild-type activity), whereas the bH217L mutant is photosynthetically incompetent and contains a cytochrome bc1 complex that has only 10% of the wild-type activity. Single-turnover flash-activated electron transfer experiments show that cytochrome bH is reduced via the Qo site with near native rates in the mutant strains but that electron transfer between cytochrome bH and quinone bound at the Qi site is greatly slowed. These results are consistent with redox midpoint potential (Em) measurements of the cytochrome b subunit hemes and the Qi site quinone. The Em values of cyt bL and bH are approximately the same in the mutants and wild type, although the mutant strains have a larger relative concentration of what may be the high-potential form of cytochrome bH, called cytochrome b150. However, the redox properties of the semiquinone at the Qi site are altered significantly. The Qi site semiquinone stability constant of bH217R is 10 times higher than in the wild type, while in the other two strains (bH217D and bH217L) the stability constant is much lower than in the wild type. Thus H217 appears to have major effects on the redox properties of the quinone bound at the Qi site. These data are incorporated into a suggestion that H217 forms part of the binding pocket of the Qi site in a manner reminiscent of the interaction between quinone bound at the Qb site and H190 of the L subunit of the bacterial photosynthetic reaction center.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter capsulatus/metabolismo , Ubiquinona/metabolismo , Sequência de Aminoácidos , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Carotenoides/efeitos da radiação , Complexo III da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Complexo III da Cadeia de Transporte de Elétrons/efeitos da radiação , Heme/análise , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NADH Desidrogenase/análise , Oxirredução , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos dos fármacos , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Potenciometria , Rhodobacter capsulatus/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA