Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Rep ; 35(1): 108940, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33784499

RESUMO

SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Dano ao DNA , Isoxazóis/farmacologia , Pirazinas/farmacologia , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , COVID-19/metabolismo , COVID-19/patologia , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Células Vero
2.
Artigo em Inglês | MEDLINE | ID: mdl-32324162

RESUMO

Background Concomitant exposure to environmental/occupational toxicants such as aflatoxin B1 (AFB1) and arsenic in some regions of the world has been well reported. Therefore, this calls for the assessment of the efficacy of agents such as phytochemicals, which are already known for their ethno-medicinal uses in prophylaxis/remediation. We investigated the possible cytotoxic bio-interactions between AFB1 and sodium arsenite (SA) in urinary bladder cells. We also assessed the cytoprotective effects of curcumin and the ethanol stem bark extract of Khaya senegalensis (K2S). Methods The cells were exposed to graded levels of AFB1, SA, curcumin, and K2S for 24, 48, and 72 h. Subsequently, using optimum toxic concentrations of AFB1 and SA, respectively, the influence of non-toxic levels of curcumin and/or K2S was tested on exposure of the cells to AFB1 and/or SA. Hoechst 33342/propidium iodide staining technique was used to determine the end-points due to cytotoxicity with changes in adenosine triphosphate (ATP) levels determined using Promega's CellTiter-Glo luminescent assay. Results Co-treatment of the cells with AFB1 and SA resulted in synergy in cytotoxic effects. Cytotoxicity was reduced by 3.5- and 2.9-fold by pre-treatment of the cells with curcumin and K2S before treatment with AFB1, while post-treatment resulted in 1.1- and 2.6-fold reduction, respectively. Pre-exposure of the cells with curcumin and K2S before treatment with SA ameliorated cytotoxicity by 3.8- and 3.0-fold, but post-treatment caused a 1.2- and 1.3-fold reduction, respectively. Conclusions Pre-treatment of the cells with either curcumin or K2S exhibited cytoprotective effects by ameliorating AFB1- and SA-induced cytotoxicity with inferred tendencies to prevent carcinogenesis.


Assuntos
Aflatoxina B1/toxicidade , Arsenitos/toxicidade , Curcumina/farmacologia , Meliaceae/química , Extratos Vegetais/farmacologia , Compostos de Sódio/toxicidade , Neoplasias da Bexiga Urinária/tratamento farmacológico , Bexiga Urinária/efeitos dos fármacos , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Humanos , Cultura Primária de Células , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/patologia
3.
Cell Rep ; 30(7): 2055-2064.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075752

RESUMO

Mechanisms underpinning airway epithelial homeostatic maintenance and ways to prevent its dysregulation remain elusive. Herein, we identify that ß-catenin phosphorylated at Y489 (p-ß-cateninY489) emerges during human squamous lung cancer progression. This led us to develop a model of airway basal stem cell (ABSC) hyperproliferation by driving Wnt/ß-catenin signaling, resulting in a morphology that resembles premalignant lesions and loss of ciliated cell differentiation. To identify small molecules that could reverse this process, we performed a high-throughput drug screen for inhibitors of Wnt/ß-catenin signaling. Our studies unveil Wnt inhibitor compound 1 (WIC1), which suppresses T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) activity, reduces ABSC proliferation, induces ciliated cell differentiation, and decreases nuclear p-ß-cateninY489. Collectively, our work elucidates a dysregulated Wnt/p-ß-cateninY489 axis in lung premalignancy that can be modeled in vitro and identifies a Wnt/ß-catenin inhibitor that promotes airway homeostasis. WIC1 may therefore serve as a tool compound in regenerative medicine studies with implications for restoring normal airway homeostasis after injury.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteínas Wnt/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Ensaios de Triagem em Larga Escala/métodos , Homeostase/efeitos dos fármacos , Humanos , Pulmão/citologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Células-Tronco/citologia , Células-Tronco/patologia , Transfecção , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(37): 18597-18606, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31439817

RESUMO

Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Tier-1 Select Agents that cause melioidosis and glanders, respectively. These are highly lethal human infections with limited therapeutic options. Intercellular spread is a hallmark of Burkholderia pathogenesis, and its prominent ties to virulence make it an attractive therapeutic target. We developed a high-throughput cell-based phenotypic assay and screened ∼220,000 small molecules for their ability to disrupt intercellular spread by Burkholderia thailandensis, a closely related BSL-2 surrogate. We identified 268 hits, and cross-species validation found 32 hits that also disrupt intercellular spread by Bp and/or Bm Among these were a fluoroquinolone analog, which we named burkfloxacin (BFX), which potently inhibits growth of intracellular Burkholderia, and flucytosine (5-FC), an FDA-approved antifungal drug. We found that 5-FC blocks the intracellular life cycle at the point of type VI secretion system 5 (T6SS-5)-mediated cell-cell spread. Bacterial conversion of 5-FC to 5-fluorouracil and subsequently to fluorouridine monophosphate is required for potent and selective activity against intracellular Burkholderia In a murine model of fulminant respiratory melioidosis, treatment with BFX or 5-FC was significantly more effective than ceftazidime, the current antibiotic of choice, for improving survival and decreasing bacterial counts in major organs. Our results demonstrate the utility of cell-based phenotypic screening for Select Agent drug discovery and warrant the advancement of BFX and 5-FC as candidate therapeutics for melioidosis in humans.


Assuntos
Burkholderia pseudomallei/efeitos dos fármacos , Ciprofloxacina/farmacologia , Reposicionamento de Medicamentos , Flucitosina/farmacologia , Melioidose/tratamento farmacológico , Animais , Burkholderia pseudomallei/patogenicidade , Ciprofloxacina/análogos & derivados , Ciprofloxacina/uso terapêutico , Citoplasma/efeitos dos fármacos , Citoplasma/microbiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Flucitosina/uso terapêutico , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Melioidose/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Resultado do Tratamento , Virulência
5.
Cell Rep ; 21(2): 517-532, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29020636

RESUMO

The human cerebral cortex possesses distinct structural and functional features that are not found in the lower species traditionally used to model brain development and disease. Accordingly, considerable attention has been placed on the development of methods to direct pluripotent stem cells to form human brain-like structures termed organoids. However, many organoid differentiation protocols are inefficient and display marked variability in their ability to recapitulate the three-dimensional architecture and course of neurogenesis in the developing human brain. Here, we describe optimized organoid culture methods that efficiently and reliably produce cortical and basal ganglia structures similar to those in the human fetal brain in vivo. Neurons within the organoids are functional and exhibit network-like activities. We further demonstrate the utility of this organoid system for modeling the teratogenic effects of Zika virus on the developing brain and identifying more susceptibility receptors and therapeutic compounds that can mitigate its destructive actions.


Assuntos
Antirretrovirais/farmacologia , Córtex Cerebral/citologia , Avaliação Pré-Clínica de Medicamentos/métodos , Organoides/virologia , Cultura Primária de Células/métodos , Zika virus/efeitos dos fármacos , Linhagem Celular , Córtex Cerebral/virologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/virologia , Humanos , Neurônios/citologia , Neurônios/metabolismo , Neurônios/virologia , Organoides/citologia , Organoides/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , c-Mer Tirosina Quinase/metabolismo
6.
Sci Rep ; 7(1): 11261, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900159

RESUMO

Discovery of first-in-class medicines for treating cancer is limited by concerns with their toxicity and safety profiles, while repurposing known drugs for new anticancer indications has become a viable alternative. Here, we have developed a new approach that utilizes cell cycle arresting patterns as unique molecular signatures for prioritizing FDA-approved drugs with repurposing potential. As proof-of-principle, we conducted large-scale cell cycle profiling of 884 FDA-approved drugs. Using cell cycle indexes that measure changes in cell cycle profile patterns upon chemical perturbation, we identified 36 compounds that inhibited cancer cell viability including 6 compounds that were previously undescribed. Further cell cycle fingerprint analysis and 3D chemical structural similarity clustering identified unexpected FDA-approved drugs that induced DNA damage, including clinically relevant microtubule destabilizers, which was confirmed experimentally via cell-based assays. Our study shows that computational cell cycle profiling can be used as an approach for prioritizing FDA-approved drugs with repurposing potential, which could aid the development of cancer therapeutics.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Linhagem Celular Tumoral , Biologia Computacional/métodos , Humanos
7.
BMC Complement Altern Med ; 17(1): 381, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768515

RESUMO

BACKGROUND: Epidemiological and experimental evidences have shown cancer as a leading cause of death worldwide. Although the folklore use of plants as a reliable source of health-restoring principles is well-documented, the search for more of such plants that are active against diseases, such as cancer, continues. We report here a laboratory-based evidence of the relevance of an ethanol leaf extract of Anogeissus leiocarpus (A2L) in comparison with resveratrol, a natural polyphenol, in cancer therapy. METHODS: The quantitative assessment of flavonoid and phenolic contents involved quercetin and gallic acid as standards, respectively were determined using spectrophotometry. Cytotoxicity was determined fluorometrically using propidium-iodide-staining method. Antioxidant status, adenosine triphosphate (ATP) levels, caspase activities and mitochondrial integrity were assessed using fluorometry/luminometry. RESULTS: The antioxidant assay demonstrated that A2L possesses a strong antioxidant capacity as compared with the reference compounds, ascorbic acid and butylated hydroxytoluene. This is further buttressed by the significantly high level of phenolics obtained in the quantitative assessment of the extract. A 72-h post-treatment examination indicated that both A2L and resveratrol modulate the proliferation of HepG2 liver carcinoma cells in a time- and concentration-dependent manner. Determination of the total nuclei area, propidium-iodide negative and positive nuclei areas all further buttress the modulation of cell proliferation by A2L and resveratrol with the indication that the observed cell death is due to apoptosis and necrosis at lower and higher concentrations of treatments respectively. At lower concentrations (0.39-3.13 µg/mL), resveratrol possesses higher tendencies to activate caspases 3 and 7. Bioenergetically, both resveratrol and A2L do not adversely affect the cells at lower concentrations (0.39-6.25 µg/mL for resveratrol and 12.5-100.0 µg/mL for A2L) except at higher concentrations (12.5-25.0 µg/mL for resveratrol and 200-800 µg/mL for A2L) which are more pronounced in A2L-treated cells. Furthermore, the antioxidant status of HepG2 cells is not perturbed by resveratrol as compared with A2L. Assessment of 24-h post-treatment mitochondrial function shows that resveratrol is not mitotoxic as compared with A2L which exhibits mitotoxicity at its highest concentration. CONCLUSIONS: Taken together, findings from this study showed that A2L possesses strong antiproliferative activity and its prospect in the management of hepatocellular carcinoma deserves further investigation.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Combretaceae/química , Neoplasias Hepáticas/tratamento farmacológico , Fitoterapia , Estilbenos/uso terapêutico , Trifosfato de Adenosina/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Apoptose , Carcinoma Hepatocelular/metabolismo , Caspases/metabolismo , Proliferação de Células , Combretaceae/classificação , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose , Fenóis/farmacologia , Fenóis/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Resveratrol , Estilbenos/farmacologia
8.
J Integr Med ; 15(3): 214-230, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28494852

RESUMO

OBJECTIVE: The fatality of cancer is mostly dependent on the possibility of occurrence of metastasis. Thus, if the development of metastasis can be prevented through novel therapeutic strategies targeted against this process, then the success of cancer treatment will drastically increase. In this study, therefore, we evaluated the antimetastatic potentials of an extract of Khaya senegalensis and curcumin on the metastatic liver cell line HepG2, and also assessed the anticancer property of the extract. METHODS: Cells were cultured and treated with graded concentrations of test substances for 24, 48, or 72 h with provisions made for negative controls. Treated cells were assessed as follows: nanotechnologically - atomic force microscopy (AFM) was used to determine cell stiffness; biochemically - cell cytotoxicity, glutathione level and adenosine triphosphate status, caspase activation and mitochondrial toxicity were considered; and microbiologically - a carrot disk assay was used to assess the anticancer property of the extract of K. senegalensis. RESULTS: Curcumin and K. senegalensis increased the cell stiffness by 2.6- and 4.0-fold respectively, indicating their antimetastatic effects. Corresponding changes in redox (glutathione level) and energy (adenosine triphosphate) status of the cells were also demonstrated. Further mechanistic studies indicated that curcumin was not mitotoxic in HepG2 cells unlike the K. senegalensis extract. In addition, the extract potently inhibited the Agrobacterium tumefaciens-induced genetic transformation based on carrot disk assay. CONCLUSION: Cell elasticity measurement data, using AFM, strongly suggested, for the first time, that both curcumin and the extract of K. senegalensis exhibited antimetastatic properties on HepG2 cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Curcuma , Curcumina/farmacologia , Meliaceae , Metástase Neoplásica/prevenção & controle , Fitoterapia , Extratos Vegetais/farmacologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose , Proliferação de Células , Curcumina/uso terapêutico , Elasticidade , Glutationa/metabolismo , Células Hep G2 , Humanos , Microscopia de Força Atômica , Invasividade Neoplásica/prevenção & controle , Oxirredução , Extratos Vegetais/uso terapêutico
9.
J Virol ; 89(16): 8428-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041296

RESUMO

UNLABELLED: Certain members of the Arenaviridae family are category A agents capable of causing severe hemorrhagic fevers in humans. Specific antiviral treatments do not exist, and the only commonly used drug, ribavirin, has limited efficacy and can cause severe side effects. The discovery and development of new antivirals are inhibited by the biohazardous nature of the viruses, making them a relatively poorly understood group of human pathogens. We therefore adapted a reverse-genetics minigenome (MG) rescue system based on Junin virus, the causative agent of Argentine hemorrhagic fever, for high-throughput screening (HTS). The MG rescue system recapitulates all stages of the virus life cycle and enables screening of small-molecule libraries under biosafety containment level 2 (BSL2) conditions. The HTS resulted in the identification of four candidate compounds with potent activity against a broad panel of arenaviruses, three of which were completely novel. The target for all 4 compounds was the stage of viral entry, which positions the compounds as potentially important leads for future development. IMPORTANCE: The arenavirus family includes several members that are highly pathogenic, causing acute viral hemorrhagic fevers with high mortality rates. No specific effective treatments exist, and although a vaccine is available for Junin virus, the causative agent of Argentine hemorrhagic fever, it is licensed for use only in areas where Argentine hemorrhagic fever is endemic. For these reasons, it is important to identify specific compounds that could be developed as antivirals against these deadly viruses.


Assuntos
Antivirais/farmacologia , Infecções por Arenaviridae/prevenção & controle , Arenavirus/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Internalização do Vírus/efeitos dos fármacos , Antivirais/isolamento & purificação , Humanos , Vírus Junin/genética , Genética Reversa/métodos
10.
ACS Nano ; 5(3): 1805-17, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21323332

RESUMO

Because of concerns about the safety of a growing number of engineered nanomaterials (ENM), it is necessary to develop high-throughput screening and in silico data transformation tools that can speed up in vitro hazard ranking. Here, we report the use of a multiparametric, automated screening assay that incorporates sublethal and lethal cellular injury responses to perform high-throughput analysis of a batch of commercial metal/metal oxide nanoparticles (NP) with the inclusion of a quantum dot (QD1). The responses chosen for tracking cellular injury through automated epifluorescence microscopy included ROS production, intracellular calcium flux, mitochondrial depolarization, and plasma membrane permeability. The z-score transformed high volume data set was used to construct heat maps for in vitro hazard ranking as well as showing the similarity patterns of NPs and response parameters through the use of self-organizing maps (SOM). Among the materials analyzed, QD1 and nano-ZnO showed the most prominent lethality, while Pt, Ag, SiO2, Al2O3, and Au triggered sublethal effects but without cytotoxicity. In order to compare the in vitro with the in vivo response outcomes in zebrafish embryos, NPs were used to assess their impact on mortality rate, hatching rate, cardiac rate, and morphological defects. While QDs, ZnO, and Ag induced morphological abnormalities or interfered in embryo hatching, Pt and Ag exerted inhibitory effects on cardiac rate. Ag toxicity in zebrafish differed from the in vitro results, which is congruent with this material's designation as extremely dangerous in the environment. Interestingly, while toxicity in the initially selected QD formulation was due to a solvent (toluene), supplementary testing of additional QDs selections yielded in vitro hazard profiling that reflect the release of chalcogenides. In conclusion, the use of a high-throughput screening, in silico data handling and zebrafish testing may constitute a paradigm for rapid and integrated ENM toxicological screening.


Assuntos
Bioensaio/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/efeitos dos fármacos , Microscopia de Fluorescência/métodos , Nanoestruturas/toxicidade , Pontos Quânticos , Testes de Toxicidade/métodos , Animais , Embrião não Mamífero/patologia , Peixe-Zebra
11.
Clin Cancer Res ; 15(23): 7238-45, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19920105

RESUMO

PURPOSE: Discovery of agents that protect or mitigate normal tissue from radiation injury during radiotherapy, accidents, or terrorist attacks is of importance. Specifically, bone marrow insufficiency, with possible infection due to immunosuppression, can occur after total body irradiation (TBI) or regional irradiation and is a major component of the acute radiation syndrome. The purpose of this study was to identify novel radioprotectors and mitigators of the hematopoietic system. EXPERIMENTAL DESIGN: High-throughput screening of small-molecule libraries was done using viability of a murine lymphocyte line as a readout with further validation in human lymphoblastoid cells. The selected compounds were then tested for their ability to counter TBI lethality in mice. RESULTS: All of two major classes of antibiotics, tetracyclines and fluoroquinolones, which share a common planar ring moiety, were radioprotective. Furthermore, tetracycline protected murine hematopoietic stem/progenitor cell populations from radiation damage and allowed 87.5% of mice to survive when given before and 35% when given 24 h after lethal TBI. Interestingly, tetracycline did not alter the radiosensitivity of Lewis lung cancer cells. Tetracycline and ciprofloxacine also protected human lymphoblastoid cells, reducing radiation-induced DNA double-strand breaks by 33% and 21%, respectively. The effects of these agents on radiation lethality are not due to the classic mechanism of free radical scavenging but potentially through activation of the Tip60 histone acetyltransferase and altered chromatin structure. CONCLUSIONS: Tetracyclines and fluoroquinolones can be robust radioprotectors and mitigators of the hematopoietic system with potential utility in anticancer radiotherapy and radiation emergencies.


Assuntos
Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Protetores contra Radiação/farmacologia , Tetraciclinas/farmacologia , Animais , Células da Medula Óssea/citologia , Carcinoma Pulmonar de Lewis/terapia , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunossupressores/farmacologia , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Fatores de Tempo , Irradiação Corporal Total
12.
Proc Natl Acad Sci U S A ; 105(32): 11218-23, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18678901

RESUMO

Alternative splicing has emerged as a promising therapeutic target in a number of human disorders. However, the discovery of compounds that target the splicing reaction has been hindered by the lack of suitable high-throughput screening assays. Conversely, the effects of known drugs on the splicing reaction are mostly unclear and not routinely assessed. We have developed a two-color fluorescent reporter for cellular assays of exon inclusion that can accommodate nearly any cassette exon and minimizes interfering effects from changes in transcription and translation. We used microtubule-associated protein tau (MAPT) exon 10, whose missplicing causes frontotemporal dementia, to test the reporter in screening libraries of known bioactive compounds. These screens yielded several compounds that alter the splicing of the exon, both in the reporter and in the endogenous MAPT mRNA. One compound, digoxin, has long been used in the treatment of heart failure, but was not known to modulate splicing. The positive compounds target different signal transduction pathways, and microarray analysis shows that each compound affects the splicing of a different set of exons in addition to MAPT exon 10. Our results identify currently prescribed cardiotonic steroids as modulators of alternative splicing and demonstrate the feasibility of screening for drugs that alter exon inclusion.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Cardiotônicos/farmacologia , Digoxina/farmacologia , Éxons , RNA Mensageiro/biossíntese , Proteínas tau/biossíntese , Processamento Alternativo/genética , Linhagem Celular , Demência/genética , Demência/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Éxons/genética , Perfilação da Expressão Gênica/métodos , Genes Reporter/genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA