Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37514107

RESUMO

Pancreatic carcinoma is a cancer disease with high mortality. Thus, new and efficient treatments for this disease are badly needed. Curcumin has previously shown promising effects in pancreatic cancer patients; however, this natural compound suffers from inadequate efficacy and bioavailability, preventing its clinical approval. The synthetic curcuminoid EF24 was developed with activities superior to curcumin against various cancer types. In this study, a series of analogs of EF24 were investigated for anticancer effects on pancreatic carcinoma models. A distinct activity boost was achieved by straightforward N-acrylation of EF24 analogs, in particular, of compounds bearing 3-fluoro-4-methoxybenzylidene, 3,4-difluorobenzylidene, and 4-trifluoromethylbenzylidene moieties, while no improvement was seen for N-acryloyl-modified EF24. Apoptosis induction and suppression of phospho-STAT3 levels were determined, the latter corroborated by docking of active curcuminoids into STAT3. Hence, promising new clues for the development of efficient and superior curcuminoids as valuable treatment options for one of the most lethal cancer diseases were discovered in this study.

2.
Cells ; 10(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206989

RESUMO

Honokiol (HNK) is a biphenolic compound that has been used in traditional medicine for treating various ailments, including cancers. In this study, we determined the effect of HNK on colon cancer cells in culture and in a colitis-associated cancer model. HNK treatment inhibited proliferation and colony formation while inducing apoptosis. In addition, HNK suppressed colonosphere formation. Molecular docking suggests that HNK interacts with reserve stem cell marker protein DCLK1, with a binding energy of -7.0 Kcal/mol. In vitro kinase assays demonstrated that HNK suppressed the DCLK1 kinase activity. HNK also suppressed the expression of additional cancer stem cell marker proteins LGR5 and CD44. The Hippo signaling pathway is active in intestinal stem cells. In the canonical pathway, YAP1 is phosphorylated at Ser127 by upstream Mst1/2 and Lats1/2. This results in the sequestration of YAP1 in the cytoplasm, thereby not allowing YAP1 to translocate to the nucleus and interact with TEAD1-4 transcription factors to induce gene expression. However, HNK suppressed Ser127 phosphorylation in YAP1, but the protein remains sequestered in the cytoplasm. We further determined that this occurs by YAP1 interacting with PUMA. To determine if this also occurs in vivo, we performed studies in an AOM/DSS induced colitis-associated cancer model. HNK administered by oral gavage at a dose of 5mg/kg bw for 24 weeks demonstrated a significant reduction in the expression of YAP1 and TEAD1 and in the stem marker proteins. Together, these data suggest that HNK prevents colon tumorigenesis in part by inducing PUMA-YAP1 interaction and cytoplasmic sequestration, thereby suppressing the oncogenic YAP1 activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Compostos de Bifenilo/farmacologia , Carcinogênese/patologia , Neoplasias do Colo/patologia , Lignanas/farmacologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colite/complicações , Quinases Semelhantes a Duplacortina , Regulação para Baixo/efeitos dos fármacos , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos ICR , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco , Proteínas de Sinalização YAP
3.
Curr Med Chem ; 25(22): 2585-2594, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28137215

RESUMO

Pancreatic ductal adenocarcinoma is one of the deadliest cancers worldwide and the fourth leading cause of cancer-related deaths in United States. Regardless of the advances in molecular pathogenesis and consequential efforts to suppress the disease, this cancer remains a major health problem in United States. By 2030, the projection is that pancreatic cancer will be climb up to be the second leading cause of cancer-related deaths in the United States. Pancreatic cancer is a rapidly invasive and highly metastatic cancer, and does not respond to standard therapies. Emerging evidence supports that the presence of a unique population of cells called cancer stem cells (CSCs) as potential cancer inducing cells and efforts are underway to develop therapeutic strategies targeting these cells. CSCs are rare quiescent cells, and with the capacity to self-renew through asymmetric/symmetric cell division, as well as differentiate into various lineages of cells in the cancer. Studies have been shown that CSCs are highly resistant to standard therapy and also responsible for drug resistance, cancer recurrence and metastasis. To overcome this problem, we need novel preventive agents that target these CSCs. Natural compounds or phytochemicals have ability to target these CSCs and their signaling pathways. Therefore, in the present review article, we summarize our current understanding of pancreatic CSCs and their signaling pathways, and the phytochemicals that target these cells including curcumin, resveratrol, tea polyphenol EGCG (epigallocatechin- 3-gallate), crocetinic acid, sulforaphane, genistein, indole-3-carbinol, vitamin E δ- tocotrienol, Plumbagin, quercetin, triptolide, Licofelene and Quinomycin. These natural compounds or phytochemicals, which inhibit cancer stem cells may prove to be promising agents for the prevention and treatment of pancreatic cancers.


Assuntos
Neoplasias Pancreáticas/prevenção & controle , Compostos Fitoquímicos/uso terapêutico , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Quinases Semelhantes a Duplacortina , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Compostos Fitoquímicos/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
4.
J Hematol Oncol ; 10(1): 10, 2017 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-28061797

RESUMO

Osteosarcoma is the most common primary bone cancer affecting children and adolescents worldwide. Despite an incidence of three cases per million annually, it accounts for an inordinate amount of morbidity and mortality. While the use of chemotherapy (cisplatin, doxorubicin, and methotrexate) in the last century initially resulted in marginal improvement in survival over surgery alone, survival has not improved further in the past four decades. Patients with metastatic osteosarcoma have an especially poor prognosis, with only 30% overall survival. Hence, there is a substantial need for new therapies. The inability to control the metastatic progression of this localized cancer stems from a lack of complete knowledge of the biology of osteosarcoma. Consequently, there has been an aggressive undertaking of scientific investigation of various signaling pathways that could be instrumental in understanding the pathogenesis of osteosarcoma. Here, we review these cancer signaling pathways, including Notch, Wnt, Hedgehog, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, and JAK/STAT, and their specific role in osteosarcoma. In addition, we highlight numerous natural compounds that have been documented to target these pathways effectively, including curcumin, diallyl trisulfide, resveratrol, apigenin, cyclopamine, and sulforaphane. We elucidate through references that these natural compounds can induce cancer signaling pathway manipulation and possibly facilitate new treatment modalities for osteosarcoma.


Assuntos
Produtos Biológicos/farmacologia , Osteossarcoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Adolescente , Criança , Humanos
5.
Semin Cancer Biol ; 40-41: 192-208, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27609747

RESUMO

Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3'-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Sobrevivência Celular , Humanos , Células-Tronco Neoplásicas/fisiologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
6.
Chin J Nat Med ; 14(2): 81-100, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26968675

RESUMO

Nature is a rich source of medicinal plants and their products that are useful for treatment of various diseases and disorders. Momordica charantia, commonly known as bitter melon or bitter gourd, is one of such plants known for its biological activities used in traditional system of medicines. This plant is cultivated in all over the world, including tropical areas of Asia, Amazon, east Africa, and the Caribbean and used as a vegetable as well as folk medicine. All parts of the plant, including the fruit, are commonly consumed and cooked with different vegetables, stir-fried, stuffed or used in small quantities in soups or beans to give a slightly bitter flavor and taste. The plant is reported to possess anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-bacterial, anti-obesity, and immunomodulatory activities. The plant extract inhibits cancer cell growth by inducing apoptosis, cell cycle arrest, autophagy and inhibiting cancer stem cells. The plant is rich in bioactive chemical constituents like cucurbitane type triterpenoids, triterpene glycosides, phenolic acids, flavonoids, essential oils, saponins, fatty acids, and proteins. Some of the isolated compounds (Kuguacin J, Karaviloside XI, Kuguaglycoside C, Momordicoside Q-U, Charantin, α-eleostearic acid) and proteins (α-Momorcharin, RNase MC2, MAP30) possess potent biological activity. In the present review, we are summarizing the anti-oxidant, anti-inflammatory, and anti-cancer activities of Momordica charantia along with a short account of important chemical constituents, providing a basis for establishing detail biological activities of the plant and developing novel drug molecules based on the active chemical constituents.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Momordica charantia/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Antineoplásicos Fitogênicos/química , Humanos , Neoplasias/tratamento farmacológico , Extratos Vegetais/química
7.
Curr Pharm Des ; 19(11): 2047-69, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23116312

RESUMO

Curcumin is the active component of dried rhizome of Curcuma longa, a perennial herb belonging to ginger family, cultivated extensively in south and southeastern tropical Asia. It is widely consumed in the Indian subcontinent, south Asia and Japan in traditional food recipes. Extensive research over last few decades has shown that curcumin is a potent anti-inflammatory agent with powerful therapeutic potential against a variety of cancers. It suppresses proliferation and metastasis of human tumors through regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases and other enzymes. It induces apoptotic cell death and also inhibits proliferation of cancer cells by cell cycle arrest. Pharmacokinetic data has shown that curcumin undergoes rapid metabolism leading to glucuronidation and sulfation in the liver and excretion in the feces, which accounts for its poor systemic bioavailability. The compound has, therefore, been formulated and administered using different drug delivery systems such as liposomes, micelles, polysaccharides, phospholipid complexes and nanoparticles that can overcome the limitation of bioavailability to some extent. Attempts to avoid rapid metabolism of curcumin until now have been met with limited success. This has prompted researchers to look for new synthetic curcumin analogs in order to overcome the drawbacks of limited bioavailability and rapid metabolism, and gain efficacy with reduced toxicity. In this review we provide a summarized account of novel synthetic curcumin formulations and analogs, and the recent progress in the field of cancer prevention and treatment.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Curcumina/uso terapêutico , Desenho de Fármacos , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Disponibilidade Biológica , Biotransformação , Química Farmacêutica , Curcumina/análogos & derivados , Curcumina/síntese química , Curcumina/farmacocinética , Portadores de Fármacos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
8.
Curr Drug Targets ; 13(14): 1777-98, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23140289

RESUMO

Nature has been a rich source of therapeutic agents for thousands of years and an impressive number of modern drugs have been isolated from natural sources based on the uses of these plants in traditional medicine. Henna is one such plant commonly known as Persian Henna or Lawsonia inermis, a bushy, flowering tree, commonly found in Australia, Asia and along the Mediterranean coasts of Africa. Paste made from the leaves of Henna plant has been used since the Bronze Age to dye skin, hairs and fingernails especially at the times of festivals. In recent times henna paste has been used for body art paintings and designs in western countries. Despite such widespread use in dyeing and body art painting, Henna extracts and constituents possess numerous biological activities including antioxidant, anti-inflammatory, antibacterial and anticancer activities. The active coloring and biologically active principle of Henna is found to be Lawsone (2- hydroxy-1, 4-naphthoquinone) which can serve as a starting building block for synthesizing large number of therapeutically useful compounds including Atovaquone, Lapachol and Dichloroallyl lawsone which have been shown to possess potent anticancer activities. Some other analogs of Lawsone have been found to exhibit other beneficial biological properties such as antioxidant, anti-inflammatory, antitubercular and antimalarial. The ability of Lawsone to undergo the redox cycling and chelation of trace metal ions has been thought to be partially responsible for some of its biological activities. Despite such diverse biological properties and potent anticancer activities the compound has remained largely unexplored and hence in the present review we have summarized the chemistry and biological activities of Lawsone along with its analogs and metal complexes.


Assuntos
Lawsonia (Planta) , Naftoquinonas/uso terapêutico , Extratos Vegetais/uso terapêutico , Plantas Medicinais , Tatuagem/tendências , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/uso terapêutico , Humanos , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
9.
Med Res Rev ; 32(6): 1131-58, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23059762

RESUMO

Plumbagin is one of the simplest plant secondary metabolite of three major phylogenic families viz. Plumbaginaceae, Droseraceae, and Ebenceae, and exhibits highly potent biological activities, including antioxidant, antiinflammatory, anticancer, antibacterial, and antifungal activities. Recent investigations indicate that these activities arise mainly out of its ability to undergo redox cycling, generating reactive oxygen species and chelating trace metals in biological system. The compound is endowed with a property to inhibit the drug efflux mechanism in drug-resistant bacteria, thereby allowing intracellular accumulation of the potent drug molecules. An interesting bioactivity exhibited by this compound is the elimination of stringent, conjugative, multidrug-resistant plasmids from several bacterial strains including opportunistic bacteria, such as Acinetobacter baumannii. Moreover, plumbagin effectively induces apoptosis and causes cell cycle arrest, which is, in part, due to the inactivation of NF-κB in cancer cells. Therefore, it has been suggested that designing "hybrid drug molecules" of plumbagin by combining it with other appropriate anticancer agents may lead to the generation of novel and potent anticancer drugs with pleiotropic action against human cancers. This comprehensive review is an attempt to understand the chemistry of plumbagin and catalog its biological activities reported to date.


Assuntos
Naftoquinonas/química , Naftoquinonas/farmacologia , Plantas Medicinais/química , Animais , Disponibilidade Biológica , Técnicas Eletroquímicas , Humanos , Metais/metabolismo , Naftoquinonas/metabolismo , Naftoquinonas/farmacocinética , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA